利用导数证明不等式
“利用导数证明不等式”相关的资料有哪些?“利用导数证明不等式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“利用导数证明不等式”相关范文大全或资料大全,欢迎大家分享。
利用排序不等式证明AM-GM不等式
自己原创的。
河南开封市高级中学jason_1108@
利用排序不等式证明AM-GM不等式AM-GM不等式若a1,a2, ,an>0,则
a1+a2+ +an≥n
等号当且仅当a1=a2= =an时成立a1a2 an
证明:令G=a1a2 an,则原不等式等价于
a1+a2+ +an≥nG
构造数列
A=
B= aaaaa a,, ,2GGGnGG2Gn,, ,a1a1a2a1a2 an
显然,两组数列中的元素有着一一对应的关系,即A中第K大的元素在B中所对应的元素是第K小的元素。所以,A、B两组数列中的元素对应相乘再相加所得结果是两组数列的反序和,即为n。
另一方面,A、B两组数列错位相乘为两组数列的乱序和,即乱序和是a1+a2+ +an。G
由排序不等式,乱序和大于等于逆序和,即
a1+a2+ +an≥nG
原不等式得证。
利用微分中值定理证明不等式
目 录
摘 要 ......................................................................................................................... 1 关键词 ......................................................................................................................... 1 Abstract ...................................................................................................................... 1 Keywords ................................................................................................................... 1 0 前 言 .
不等式证明
第四章 微积分中值定理与证明 4.1 微分中值定理与证明
一 基本结论
1.零点定理:若f(x)在[a,b]连续,f(a)f(b)?0,则???(a,b),使得f(?)?0. 2.最值定理:若f(x)在[a,b]连续,则存在x1,x2使得f(x1)?m,f(x2)?M.其中
m,M分别是f(x)在[a,b]的最小值和最大值.
3.介值定理:设f(x)在[a,b]的最小值和最大值分别是m,M,对于?c?[m,M], 都存在???[a,b]使得f(?)?c.(或者:对于?c?(m,M),都存在???(a,b)使得
f(?)?c)
4.费玛定理:如果x0是极值点,且f(x)在x0可导, 则 f?(x0)?0.
5.罗尔定理:f(x)在[a,b]连续,在(a,b)可导,f(a)?f(b),则???(a,b)使得
f?(?)?0.
6.拉格朗日定理:f(x)在[a,b]连续,在(a,b)可导,,则???(a,b)使得
f(b)?f(a)?(b?a)f?(?).
) 7.柯西定理:f(x),g(x)在[a,b]连续,在(a,b)可导,且g?(x)?0,则???(a,b使得
f(b)?f(a)f?(?)?.
g(b)?g(a)g?(?)8.泰勒公
均值不等式证明
第1篇:不等式证明,均值不等式
1、设a,b?R,求证:ab?(ab)?aba?b2?abba
2、已知a,b,c是不全相等的正数,求证:a(b2?c2)?b(c2?a2)?c(a2?b2)>6abc
3、(a?b?c)(1119??)? a?bb?cc?a
24、设a,b?R?,且a?b?1,求证:(a?)?(b?)?
5、若a?b?1,求证:asinx?bcosx?
16、已知a?b?1,求证:a?b?
7、a,b,c,d?R求证:1<?441a21b225 2221 8abcd+++<2 a?b?db?c?ac?d?bd?a?c
111
18、求证2?2?2???2<2 123n
1111????<1
9、求证:?2n?1n?22n
10、求下列函数的最值
(1) 已知x>0,求y?2?x?
(2) 已知x>2,求y?x?4的最大值(-2) x1的最小值(4) x?
2111(3) 已知0<x<,求y?x(1?2x)的最大值() 2216
11、若正数a,b满足ab?(a?b)?1则a?b的最小值是()
(2?2333)
12、已知正数a,b求使不等式(a?b)?k(a?b)成立的最小k值为()(4)
1
3、求函数y?
14、二次函数f(x)?x?ax?x?a的两根x1,x2
导数在不等式证明中的应用开题报告
集宁师范学院本科生毕业设计(论文、创作)题目申报表
4、为结合学科竞赛;
5、模拟仿真;
6、其它
题目来源――A.指导教师出题;B.学生自定、自拟
集宁师范学院本科生毕业设计(论文、创作)任务书
集宁师范学院本科生毕业设计(论文、创作)开题报告
开题报告内容:(调研资料的准备与总结,研究目的、要求、思路与预期成果;任务完成的阶段内容及时间安排;完成毕业设计(论文、创作)所具备的条件因素等。
一研究内容:主要研究导数在不等式证明中的一些应用,其次研究导数的一些性质和证明不等式的一些方法;
二研究目的:不等式证明是数学学习中的重要内容之一,其常用的方法有:比较法, 分析法,综合法,归纳法,特殊不等式法。导数作为微积分学的主要内容,利用其证明不等式是一种行之有效的好方法,它能将某些不等式的证明化难为易,迎刃而解。
三研究方法:1.参考大量的相关文献及相关论文,通过中国知识网,中国学术期刊网等收集所需资料
2. 借助学过的专业知识,尤其是数学分析方面的知识和理论,微积分理论,深入分析题目,提出提纲,确定论文思路。
3. 整理导数在不等式证明中各种应用,并归纳总结。
4. 对各种应用进行比对,分析,并进行深入研究
四预期成果及形式:通过导数在不等式证明中的各种应用进行深入分析研
第19炼 利用函数证明数列不等式
第三章 第19炼 利用函数证明数列不等式 导数
第19炼 利用函数证明数列不等式
利用函数证明不等式是在高考导数题中比较考验学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数,数列,不等式连接在一起,也是近年来高考的热门题型。 一、基础知识: 1、考察类型:
(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:
(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式。 (2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向。其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式 3、常见恒成立不等式:
x(1)lnx?x?1 对数→多项式 (2)e?x?1 指数→多项式
4、关于前n项和的放缩问题:求数列前n项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几
排序不等式及证明
高中数学几个重要不等式的证明。
四、排序不等式
【】
(一)概念9: 设有两组实数
a1,a2, ,an (1) b1,b2, ,bn (2) 满足
a1 a2 an (3) b1 b2 bn (4) 另设
,cn (5) c1,c2,是实数组(2)的一个排列,记
逆序积和S a1bn a2bn 1 anb1 乱序积和S' a1c1 a2c2 ancn 似序积和S'' a1b1 a2b2 anbn 那么
S S' S'' 且等式成立当且仅当 a1 a2 an
或者
b1 b2 bn
证明【9】:
1,预备知识
引理1(Abel变换) 设(1)(2)为任意两组有序的实数组,令
k
B0 0,Bk 那么
n
b,
i
i 1
n 1
akbk anBn (ak 1 ak)Bk
k 1
k 1
事实上:
n
n
akbk
k 1
a
k 1n 1
k
(Bk Bk 1) an(Bn Bn 1) an 1(Bn 1 Bn 2) a1B1
不等式证明的方法
安庆师范学院数学与计算科学学院2013届毕业论文
不等式证明的若干方法
作者:金克川 指导老师:杨翠
摘要 无论在初等数学还是高等数学中,不等式都是十分重要的内容.而不等式的证明则是不等式知识的
重要组成部分.在本文中,我总结了一些数学中证明不等式的方法.在初等数学不等式的证明中经常用到的有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.在高等数学不等式的证明中经常利用中值定理、泰勒公式、拉格朗日函数、以及一些著名不等式,如:均值不等式、柯西不等式、詹森不等式、赫尔德不等式等等.从而使不等式的证明方法更加的完善,有利于我们进一步的探讨和研究不等式的证明. 通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯.
关键词 不等式 比较法 数学归纳法 函数
1引言 在数学的学习过程中,不等式证明是一个非常重要的内容,这些内容在初等数学和
高等数学中都有很好的体现.在数量关系上,虽然不等关系要比相等关系更加广泛的存在于现实的世界里,但是人们对于不等式的
不等式的证明方法
中原工学院
1 常用方法
1.1比较法(作差法)[1]
在比较两个实数a和b的大小时,可借助a?b的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.
例1 已知:a?0,b?0,求证:证明
a?b2a?b2?ab.
b)2?ab?a?b?2ab2a?b2?ab?(a?2?0,
故得 1.2作商法
.
在证题时,一般在a,b均为正数时,借助作商——变形——判断(大于1或小于1).
例2 设a?b?0,求证:aabb?abba. 证明 因为 a?b?0, 所以 而
abaab?1或
ab?1来判断其大小,步骤一般为:
?1,a?b?0.
baababb?a?????b?a?b?1,
故 aabb?abba. 1.3分析法(逆推法)
从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.
例3 求证:
柯西不等式的证明
柯西不等式的证明及应用
(河西学院数学系01(2)班 甘肃张掖 734000)
摘要:柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。本文在证明不等式,解三角形相关问题,求函数最值,解方程等问题的应用方面给出几个例子。
关键词:柯西不等式 证明 应用 中图分类号: O178
Identification and application of Cauchy inequality
Chen Bo
(department of mathematics , Hexi university zhangye gansu 734000)
Abstract: Cauchy-inequality is a very important in equation, flexible ingenious application it, can make some comparatively difficult problems easily solved . This text prove inequality, solve triangle rele