左孝陵离散数学3-12
“左孝陵离散数学3-12”相关的资料有哪些?“左孝陵离散数学3-12”相关的范文有哪些?怎么写?下面是小编为您精心整理的“左孝陵离散数学3-12”相关范文大全或资料大全,欢迎大家分享。
离散数学左孝陵第六章
经典的教程
代数系统
第六章
格和布尔代数
§1格的概念 §2分配格 §3有补格 §4*布尔代数
经典的教程
§1格的概念1.偏序集合格《定义》格是一个偏序集合 L, ,其中每一对元素 a, b L 都拥有一个最小上界和最大下界。通常用a b 表示a和b的最大下界,用 a b 表示a和b的最小 GLB 上界。即: {a, b} a b
——称为元素a和b的保交运算, LUB{a, b} a b ——称为元素a和b的保联运算。
经典的教程
§1格的概念例:以下均为偏序集合格(D为整除关系,Sn为n的因 子集合)。
经典的教程
§1格的概念2.代数系统格 《定义》:设 L, 是一个格,如果在A上定义两个 二元运算 和 ,使得对于任意的a,b A,a b等 于a和b的最小上界,a b等于a和b的最大下界,那 么就称<L, , > 为由格 L, 所诱导的代数系统。
经典的教程
§1格的概念3.格的主要性质: (1)格的对偶原理 设
左孝凌离散数学课后题答案
1-1,1-2 (1) 解:
a) 是命题,真值为T。 b) 不是命题。
c) 是命题,真值要根据具体情况确定。 d) 不是命题。
e) 是命题,真值为T。 f) 是命题,真值为T。 g) 是命题,真值为F。 h) 不是命题。 i) 不是命题。 (2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) (┓P ∧R)→Q b) Q→R c) ┓P d) P→┓Q (4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) 设P:王强身体很好。Q:王强成绩很好。P∧Q b) 设P:小李看书。Q:小李听音乐。P∧Q c) 设P:气候很好。Q:气候很热。P∨Q
d) 设P: a和b是偶数。Q:a+b是偶数。P→Q
e) 设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P?Q
左孝凌离散数学课后题答案
1-1,1-2 (1) 解:
a) 是命题,真值为T。 b) 不是命题。
c) 是命题,真值要根据具体情况确定。 d) 不是命题。
e) 是命题,真值为T。 f) 是命题,真值为T。 g) 是命题,真值为F。 h) 不是命题。 i) 不是命题。 (2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) (┓P ∧R)→Q b) Q→R c) ┓P d) P→┓Q (4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) 设P:王强身体很好。Q:王强成绩很好。P∧Q b) 设P:小李看书。Q:小李听音乐。P∧Q c) 设P:气候很好。Q:气候很热。P∨Q
d) 设P: a和b是偶数。Q:a+b是偶数。P→Q
e) 设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P?Q
离散数学课后习题答案 - (左孝凌版)
1-1,1-2 (1) 解:
a) 是命题,真值为T。 b) 不是命题。
c) 是命题,真值要根据具体情况确定。 d) 不是命题。
e) 是命题,真值为T。 f) 是命题,真值为T。 g) 是命题,真值为F。 h) 不是命题。 i) 不是命题。 (2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) (┓P ∧R)→Q b) Q→R c) ┓P d) P→┓Q (4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) 设P:王强身体很好。Q:王强成绩很好。P∧Q b) 设P:小李看书。Q:小李听音乐。P∧Q c) 设P:气候很好。Q:气候很热。P∨Q
d) 设P: a和b是偶数。Q:a+b是偶数。P→Q
e) 设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P?Q f
离散数学课后习题答案_(左孝凌版)
离散数学课后习题答案_(左孝凌版)
1-1,1-2 (1) 解:
a) b) c) d) e) f) g) h) i)
是命题,真值为T。 不是命题。
是命题,真值要根据具体情况确定。 不是命题。 是命题,真值为T。 是命题,真值为T。 是命题,真值为F。 不是命题。 不是命题。
(2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) b) c) d)
(┓P ∧R)→Q Q→R ┓P P→┓Q
(4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) b) c) d) 设P:王强身体很好。Q:王强成绩很好。P∧Q 设P:小李看书。Q:小李听音乐。P∧Q 设P:气候很好。Q:气候很热。P∨Q 设P: a和b是偶数。Q:a+b是偶数。P→Q
离散数学课后习题答案_(左孝凌版)
e) f) (6) 解:
a) b) c) d
离散数学课后习题答案(左孝凌版)
离散数学课后习题答案 (左孝凌版)
1-1,1-2 (1) 解:
a) b) c) d) e) f) g) h) i)
是命题,真值为T。 不是命题。
是命题,真值要根据具体情况确定。 不是命题。 是命题,真值为T。 是命题,真值为T。 是命题,真值为F。 不是命题。 不是命题。
(2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) b) c) d)
(┓P ∧R)→Q Q→R ┓P P→┓Q
(4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) b) c) d) e) f) (6) 解:
a) b) c) d) e) f) g)
P:天气炎热。Q:正在下雨。 P∧Q P:天气炎热。R:湿度较低。 P∧R R:天正在下雨。S:湿度很高。 R∨S A:刘英上山。B:李进上山。
离散数学 答案 左孝凌 上海科学技术文献出版社
1-1,1-2 (1) 解:
a) 是命题,真值为T。 b) 不是命题。
c) 是命题,真值要根据具体情况确定。 d) 不是命题。
e) 是命题,真值为T。 f) 是命题,真值为T。 g) 是命题,真值为F。 h) 不是命题。 i) 不是命题。 (2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) (┓P ∧R)→Q b) Q→R c) ┓P d) P→┓Q (4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) 设P:王强身体很好。Q:王强成绩很好。P∧Q b) 设P:小李看书。Q:小李听音乐。P∧Q c) 设P:气候很好。Q:气候很热。P∨Q
d) 设P: a和b是偶数。Q:a+b是偶数。P→Q
e) 设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P?Q
离散数学王元元习题解答(12)
第十一章 群、环、域
11.1 半群
内容提要
11.1.1 半群及独异点
定义 11.1 称代数结构为半群(semigroups),如果 ? 运算满足结合律.当半群含有关于 ? 运算的么元,则称它为独异点(monoid),或含么半群.
定理11.1 设为一半群,那么
(1)的任一子代数都是半群,称为的子半群.
(2)若独异点的子代数含有么元e,那么它必为一独异点,称为的子独异点.
定理11.2 设,是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有
(1)同态象 (2)当 定理11.3 设 SS (1) S (2)存在S到S的半群同态. 11.1.2 自由独异点 定义 11.2 称独异点 (2)对任意u?S,x?A,u?x ? e . 自由独异点(free monoid),如果有A?S使得 (3)对任意u,v?S,x,y?A,若u?x = v?y,那么u = v,x = y. (4) S由A为独异点时,则为一半群,那麽 为一半群,这里S为S上所有一元函数的集合,○ 为函数的合成运算. 为自由独异点(free monoid),如果有A?S使得 (1)e?A.
离散数学(本科)
《离散数学》复习资料 2014年12月
一、单项选择题(每小题3分,本题共15分)
1.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).
A. A?B,且A?B B.B?A,且A?B C.A?B,且A?B D.A?B,且A?B 2.设有向图(a)、(b)、(c)与(d)如图一所示,则下列结论成立的是 ( D ).
图一 A.(a)是强连通的 B.(b)是强连通的
C.(c)是强连通的 D.(d)是强连通的 3.设图G的邻接矩阵为
?01100??10011???
?10000???01001????01010??则G的边数为( B ).
A.6 B.5 C.4 D.3
4.无向简单图G是棵树,当且仅当( A ).
A.G连通且边数比结点数少1 B.G连通且结点数比边数少1 C.G的边数比结点数少1 D.G中没有回路. 5.下列公式 ( C
离散数学作业
离散数学标准化作业纸 专业班级 学号 姓名 第一章 命题逻辑的基本概念
一、判断下列语句是否是命题,若是命题是复合命题则请将其符号化 (1)中国有四大发明。 (2)2是有理数。 (3)“请进!”
(4)刘红和魏新是同学。 (5)a+b
(6)你去图书馆吗?
(7)如果买不到飞机票,我哪儿也不去。
(8)侈而惰者贫,而力而俭者富。(韩非:《韩非子?显学》) (9)火星上有生命。 (10)这朵玫瑰花多美丽啊!
二、将下列命题符号化,其中p:2<1,q:3<2 (1)只要2<1,就有3<2。 (2)如果2<1,则3?2。 (3)只有2<1,才有3?2。 (4)除非2<1,才有3?2。 (5)除非2<1,否则3?2。 (6)2<1仅当3<2。 三、将下列命题符号化
(1)小丽只能从筐里拿一个苹果或一个梨。 (2)王栋生于1992年或1993年。
- 1 -
离散数学标准化作业纸 专业班级 学号 姓名 四、设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r) (2)(p?r)