物理电学取值范围

“物理电学取值范围”相关的资料有哪些?“物理电学取值范围”相关的范文有哪些?怎么写?下面是小编为您精心整理的“物理电学取值范围”相关范文大全或资料大全,欢迎大家分享。

电学取值范围计算

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

电学取值范围计算求不损坏电路元件时, 1.变阻器阻值的变化范围, 2.电路中电流变化范围, 3.用电器两端电压变化范围, 4.用电器功率变化范围, 5.电路总功率变化范围。

1.串联电路取值范围计算; 2.并联电路取值范围计算。

串联电路取值范围计算S A aR1 V

P R2

b

在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下: 1. 滑动变阻器R2的调节范围是多少?

S A

aR1

P R2

b

在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下: 2. 电路中电流大小的变化范围是多少?

S A

aR1

P R2

b

在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下 , 3. 电阻R1两端电压的变化范围值是多少?

S A

aR1

P R2

b

在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “2

求函数参数的取值范围

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

导数的应用——求函数中参数的取值范围

一、教学目标及要求:

1.掌握求函数中参数的常用方法

2.熟练解决题中恒成立、存在、任意等问题 3.了解相关数学思想和方法 二、主要命题方式:

方式一:给出函数的单调性,求函数的解析式中的参数取值范围

方式二:已知某个不等式在给定区间上恒成立,求解析式中的参数取值范围

方式三:已知函数的极值点、极值、极值点的个数。求函数解析式中参数的取值范围 三、典例解析

命题方式一:给出函数的单调性,求函数的解析式中的参数取值范围 例1:已知函数f(x)=(x2+bx+b) 1?2x(b?R) (1)当b=4时 求f(x)的极值。 (2)若f(x)在区间(0,

方法总结:

1)上单调递增,求b的取值范围。 3命题方式二:已知某个不等式在给定区间上恒成立, 求解析式中的参数取值范围

例2:已知函数f(x)=ex-ax,其中a>0,若对一切x?R、 f(x)≥1恒成立,求a的取值范围。

方法总结:

命题方式三:已知函数的极值点、极值、极值点的个数。求函数解析式中参数的取值范围

ex2例3.设函数f(x)?2?k(?lnx)(k为常数)xx

专题五取值范围探究教师版

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

2016年中考专题五初中数学取值范围

一.选择题(共5小题)

1.(2015?青岛)如图,正比例函数y1=k1x的图象与反比例函数y2=横坐标为2,当y1>y2时,x的取值范围是( )

的图象相交于A,B两点,其中点A的

A.x<﹣2或x>2

1题图 5题图

B.x<﹣2或0<x<2 C.﹣2<x<0或0<x<﹣2

D.﹣2<x<0或x>2

解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=是﹣2<x<0或x>2.选D.

的上方,∴当y1>y2时,x的取值范围

2.(2015?扬州)已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )

A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤2

解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,

∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,选:C.

3.(2015?常州)已知二次函数y=x

解析几何中求参数取值范围的几种方法

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

解析几何中求参数取值范围的方法

http://www.TL100.com 作者:佚名 文章来源:天利淘题 更新时间:2010/3/20 8:56:02 分享

近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法:

一、利用曲线方程中变量的范围构造不等式

曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.

例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 ,

(完整版)利用导数求参数的取值范围方法归纳

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

利用导数求参数的取值范围

一.已知函数单调性,求参数的取值范围

类型1.参数放在函数表达式上

例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23.

的取值范围

求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(.

,3)()1(-∞=

二.已知不等式在某区间上恒成立,求参数的取值范围

类型1.参数放在不等式上

例3.已知时都取得极值与在13

2)(23=-=+++=x x c bx ax x x f

(1)求a、b的值及函数)(x f 的单调区间.

(2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.32

3

的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--=

类型2.参数放在区间上

例4.已知三次函数d cx x ax x f ++-=2

35)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值.

(1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围.

分析:(1)935)(23++-=x x x x f ]

3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,3

1(9

初中物理电学试题

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

物理电学部分综合试题

(时间90分钟,满分100分)

一、 选择题:(每小题3分,共30分。请把正确的选择项填写在下表相应题号处)

1.下列物理量的单位不是“焦耳”的是( )

A.热量 B.功 C.功率 D.能量

2. 两只灯泡串联在电路中,其中一只亮,另一只不亮,这原因可能是( )

A. 不亮的灯泡灯丝断了或接触不良 B. 两灯相比,不亮的灯泡其电阻太小 C. 两灯相比,不亮的灯泡其电阻太大 D. 两灯相比,通过不亮灯泡的电流较小 3. 甲、乙两电炉并联在同一电源上,各有开关控制,甲炉电阻是乙炉的4倍,要两电炉产生同样多的热量则应:( )

A. 甲通电时间是乙的4倍 B. 乙通电时间是甲的4倍 C. 甲、乙通电时间一样长 D. 不知道额定电压无法比较

4. 分别标有“6V,2W”和“12V,8W”的两个灯泡,串联后接在电路中,为使其中一个恰能正常发光,加在电路两端的电压应是( ) A、6V B

解三角形中相关的取值范围问题

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

解决与三角形相关的取值范围问题

例1:在锐角ABC中,A?2B,则的取值范围是

例2:若ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sinB?cosB的取值范围是

,ccosA例3:在ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosBcb成等差数列。(1)求B的大小。 (2)若b?5,求ABC周长的取值范围。

例4:在ABC中,a2?b2?c2?ab,若ABC的外接圆半径为

ABC的面积的最大值为 2332,则2

例5:(2008,江苏)满足AB?2,AC?2BC的ABC的面积的最大值是

例6:已知角A,B,C是ABC三个内角,a,b,c是各角的对边,向量

A?B5A?B9m?(1?cos(A?B),cos)n?(,cos),且m?n? ,

2828(1)求tanA?tanB的值。 (2)求

通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以

高考数学专题复习——求解圆锥曲线离心率的取值范围

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

高考数学专题复习——求解圆锥曲线离心率的取值范围

高考数学专题复习——求解圆锥曲线离心率的取值范围 求圆锥曲线离心率的取值范围是高考的一个热点,也是一个难点,求离心率的难点在于如何建立不等关系定离心率的取值范围.

一、直接根据题意建立a,c不等关系求解.

3ax2y2

例1:(08湖南)若双曲线2 2 1(a>0,b>0)上横坐标为的点到右焦点的距离大2ab

于它到左准线的距离,则双曲线离心率的取值范围是

x2y2

备选(07北京)椭圆2 2 1(a b 0)的焦点为F1,F2,两条准线与x轴的交点分别ab

为M,N,若MN F1F2,则该椭圆离心率的取值范围是( )

二、借助平面几何关系建立a,c不等关系求解

x2y2

例2:(07湖南)设F1,F2分别是椭圆2 2 1(a b 0)的左、右焦点,若在其右ab

准线上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )

三、利用圆锥曲线相关性质建立a,c不等关系求解.

x2y2

例3:(2008福建)双曲线2 2 1(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,ab

且|PF1|=2|PF2|,则双曲线离心率的取值范围为( )

x2y2

备选(04重庆)已知双曲线2 2 1,(a

初中物理电学试题

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

物理电学部分综合试题

(时间90分钟,满分100分)

一、 选择题:(每小题3分,共30分。请把正确的选择项填写在下表相应题号处)

1.下列物理量的单位不是“焦耳”的是( )

A.热量 B.功 C.功率 D.能量

2. 两只灯泡串联在电路中,其中一只亮,另一只不亮,这原因可能是( )

A. 不亮的灯泡灯丝断了或接触不良 B. 两灯相比,不亮的灯泡其电阻太小 C. 两灯相比,不亮的灯泡其电阻太大 D. 两灯相比,通过不亮灯泡的电流较小 3. 甲、乙两电炉并联在同一电源上,各有开关控制,甲炉电阻是乙炉的4倍,要两电炉产生同样多的热量则应:( )

A. 甲通电时间是乙的4倍 B. 乙通电时间是甲的4倍 C. 甲、乙通电时间一样长 D. 不知道额定电压无法比较

4. 分别标有“6V,2W”和“12V,8W”的两个灯泡,串联后接在电路中,为使其中一个恰能正常发光,加在电路两端的电压应是( ) A、6V B

解三角形中相关的取值范围问题

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

解决与三角形相关的取值范围问题

例1:在锐角ABC中,A?2B,则的取值范围是

例2:若ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sinB?cosB的取值范围是

,ccosA例3:在ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosBcb成等差数列。(1)求B的大小。 (2)若b?5,求ABC周长的取值范围。

例4:在ABC中,a2?b2?c2?ab,若ABC的外接圆半径为

ABC的面积的最大值为 2332,则2

例5:(2008,江苏)满足AB?2,AC?2BC的ABC的面积的最大值是

例6:已知角A,B,C是ABC三个内角,a,b,c是各角的对边,向量

A?B5A?B9m?(1?cos(A?B),cos)n?(,cos),且m?n? ,

2828(1)求tanA?tanB的值。 (2)求

通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以