一年多点试验方差分析
“一年多点试验方差分析”相关的资料有哪些?“一年多点试验方差分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一年多点试验方差分析”相关范文大全或资料大全,欢迎大家分享。
正交试验方差分析(通俗易懂)
本文详细介绍了正交试验的设计方法,通俗易懂
第十一章 正交设计试验资料的方差分析
在实际工作中 ,常常需要同时考察 3个或3个以上的试验因素 ,若进行全面试验,则试验的规模将很大 ,往往因试验条件的限制而难于实施 。
正交设计是安排多因素试验 、寻求最优水平组合的一种 高效率试验设计方法。
第一节、正交设计原理和方法
(一) 正交设计的基本概念
正 交 设 计 是利用正交表来安排多因素试验、分析试验结果的一种设计方法。它从多因素试验的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优水平组合。
例如, 研究氮、磷、钾肥施用量对某小麦品种产量的影响: A因素是氮肥施用量,设A1、A2、A3 3个水平 ; B因素是磷肥施用量,设B1、B2、B3 3个水平 ; C因素是钾肥施用量,设C1、C2、C3 3个水平。
这是一个3因素每个因素3水平的试验 ,各因素的水平之间全部可能的组合有27种。
如果进行全面试验 ,可以分析各因素的效应 ,交互作用,也可选出最优水平组合。 但全面试验包含的水平组合数较多,工作量大 ,由于受试验场地、经费等限制而难于实施 。
如果试
双因素无重复试验方差分析
双因素无重复试验的方差分析检验两个因素的交互效应,对两个因素的每一 组合至少要做两次试验. 如果已知不存在交互作用,或已知交互作用对 试验的指标影响很小,则可以不考虑交互作用. 对两个因素的每一组合只做一次试验,也可以 对各因素的效应进行分析——双因素无重复试验 的方差分析.
设试验结果受两个因素 A, B 的影响,因素 A 有 r 个水平A1 , A2 , , Ar ;因素 B 有 s 个水平 B1 , B2 , , Bs .在两个因素
的每一个组合 Ai B j 作一次试验,所得试验结果为
X ij i 1,2,
, r; j 1,2,
, s .
因素B 因素A A1A2
B1
B2
Bs
x11 x21 xr 1
x12x22 xr 2
x1sx2 s xrs
Ar
假设 X ij~N ( ij , 2 ), i 1, , r , j 1, , s.各 X ij 独立, ij , 2 均为未知参数.1 r s ij , rs i 1 j 1 1 s i ij , s j 1 记 r 1 j ij , r i 1 ai
方差分析和试验设计
6方差分析与试验设计
在研究一个或多个分类型自变量与一个数值型因变量之间的关系时,方差分析就是其中主要方法之一。检验多个总体均值是否相等的统计方法。
所要检验的对象称为因素。因素的不同表现称为水平。每个因子水平下得到的样本数据称为观测值。
随机误差:在同一行业(同一总体)下,样本的各观测值是不同的。抽样随机性造成。 系统误差:在不同一行业(不同一总体)下,样本的各观测值也是不同的。抽样随机性和行业本身造成的。
组内误差:衡量因素在同一行业(同一总体)下样本数据的误差。只包含随机误差。 组间误差:衡量因素在不同一行业(不同一总体)下样本数据的误差。包含随机误差、系统误差。
方差分析的三大假设:
每个总体服从正态分布;
每个总体的方差?必须相同; 观测值是独立的;
2
单因素方差分析(F分布)
数据结构:Xij表示第i个水平(总体)的第j个的观测值。(i列j行)
分析步骤:
u 2 ?? u i ???? 1提出假设。 H 0 : u 1 ? ? ? ? ? ? u k 自变量对因变量没有显著影响
H 1 : i , 2 ,? ? ?? , k )
方差分析
一、单因素方差分析
1.完全窗口介绍
单因素方差分析的完全窗口管理通过Analyze菜单中的Compare Means由One-Way ANOVA菜单项调用。 (1)主对话框
按Analyze → Compared Means → One-Way Anova的顺序单击。就可以打开“单因素方差分析”主对话框,如图1所示。
图1 “单因素方差分析”对话框
(2)因变量框
在主对话框中可以看到因变量框(Dependent List),该框中列出主要分析的所有因变量。要从左源变量框中选取变量进入该框,只需选中所要选取的变量,然后按向右的箭头即可。可以有多个因变量。 (3)因素框
在主对话框中可以看到因素框(Factor),该框中列出了因素。要从左边源变量框中选取变量进入该框,只需选中所要选取的变量,然后按向右的箭头即可。因素同样也是分组变量,必须满足只取有限个水平的条件。 (4)Contrast对话框
在主对话框中单击【Contrast】键,即可打开“Contrast”对话框,如图2所示。在该框中指定一种要用t检验来检验的priori对比,可以进行均值的多项式比较。
图2 多项式比较对话框
该框中各项意义如下: ① Polynomial复选框 选
方差分析
北京大学医学部
第五章多组数值变量比较王洪源
北京大学医学部
假设检验
两组数值变量比较
正态性、等方差假设
t-检验 正态性假设成立、不等方差 调整的t-检验 正态性、等方差假设不成立 Wilcoxon秩和检验 在正态性、等方差假设成立时t-检验的效 率是好的。
北京大学医学部
假设检验
多组数值变量比较
正态性、等方差假设 方差分析 正态性、等方差假设不成立 Kruskal-Wallis秩和检验
北京大学医学部
为研究铅对儿童神经行为的影 响,研究者在某铅矿区对儿童的血铅水平及 神经行为评价指标手指敲击测验进行了测定, 第一年和第二年儿童的血铅水平均大于等于 40 mg/dl的17名,为暴露组(group=2),第一 年儿童的血铅水平均大于等于40mg/dl、第 二年儿童的血铅水平小于40mg/dl的15名, 为既往暴露组(group=3),第一年和第二年儿 童的血铅水平均小于40mg/dl的15名,为对 照组(group=1),神经行为评价指标为第二年 的手指敲击测验得分。
例9.1
北京大学医学部
表 9.1 某铅矿区儿童不同铅表露水平的手指敲击测验结果 对照组 手指敲击 No 1 2 3 4 16 17 18 19 group 1 1
方差分析
方差分析
5.1.1评价不同行业的服务质量,消费者协会分别在零售业、旅游业、航空公司、家电制造业抽取了不同的企业作为样本,其中零售业7家,旅游业6家,航空公司5家,家电制造业5家,然后统计出近期消费者对这23家企业的投诉次数,试分析4个行业之间的服务质量是否存在显著差异?(基本数据见5-1.sav,资料来源:赖国毅等编著,SPSS17.0常用功能与应用,电子工业出版社)。
5.1.2.某企业有4条生产线生产同一中型号的产品,对每条生产线观测其一周的日产量,要求判断不同生产线的日产量是否有显著的差异(基本数据见5-2.sav)。
5.2.1.某商家有商品销售的数据资料,分析销售额是否受到促销方式和售后服务的影响。用变量“促销”对促销方式进行区分,取值为0表示无促销,取值为1表示被动促销,取值为2表示主动促销。变量“售后”对所采取的售后服务进行刻画,取值为0表示没有售后服务,取值为l表示有售后服务(基本数据见5-4.sav,资料来源:徐秋艳等,SPSS统计分析方法与应用实验教程,中国水利水电出版社,2011)。
5.3.1. 政府为了帮助年轻人提高工作技能,进行了一系列有针对性的就业能力和工作技能培训项目,为检验培训工作的成效,对1000
方差分析
方差分析
5.1.1评价不同行业的服务质量,消费者协会分别在零售业、旅游业、航空公司、家电制造业抽取了不同的企业作为样本,其中零售业7家,旅游业6家,航空公司5家,家电制造业5家,然后统计出近期消费者对这23家企业的投诉次数,试分析4个行业之间的服务质量是否存在显著差异?(基本数据见5-1.sav,资料来源:赖国毅等编著,SPSS17.0常用功能与应用,电子工业出版社)。
5.1.2.某企业有4条生产线生产同一中型号的产品,对每条生产线观测其一周的日产量,要求判断不同生产线的日产量是否有显著的差异(基本数据见5-2.sav)。
5.2.1.某商家有商品销售的数据资料,分析销售额是否受到促销方式和售后服务的影响。用变量“促销”对促销方式进行区分,取值为0表示无促销,取值为1表示被动促销,取值为2表示主动促销。变量“售后”对所采取的售后服务进行刻画,取值为0表示没有售后服务,取值为l表示有售后服务(基本数据见5-4.sav,资料来源:徐秋艳等,SPSS统计分析方法与应用实验教程,中国水利水电出版社,2011)。
5.3.1. 政府为了帮助年轻人提高工作技能,进行了一系列有针对性的就业能力和工作技能培训项目,为检验培训工作的成效,对1000
方差分析
1、方差齐性检验
由于方差分析的前提是各水平下的总体服从正态分布并且方差相等,因此有必要对方差齐性进行检验,即对控制变量不同水平下各观测变量不同总体方差是否相等进行分析。
SPSS单因素方差分析中,方差齐性检验采用了方差同质性(Homogeneity of Variance)的检验方法,其零假设是各水平下观测变量总体方差无显著性差异,实现思路同SPSS两独立样本t检验中的方差齐性检验。
2、多重比较检验
上面的基本分析可以判断控制变量是否对观测变量产生了显著影响。如果控制变量确实对观测变量产生了显著影响,进一步还应确定,控制变量的不同水平对观测变量的影响程度如何,其中哪个水平的作用明显大于其它水平,哪些水平的作用是不显著的。例如已经确定不同施肥量会对农作物的产量产生显著影响,便希望进一步了解究竟是10公斤、20公斤还是30公斤施肥量最有利于提高产量,哪种施肥量对农作物产量没有显著影响。掌握了这些信息,我们就能够制定合理的施肥方案。
多重比较检验就是分别对每个水平下的观测变量均值进行逐对比较,判断两均值之间是否存在显著差异。其零假设是相应组的均值之间无显著差异。
方差分析习题
1、某研究者观测大白鼠的肝重与体重之比,了解正氟醚对该指标的作用,同时考虑生理盐水和用戊巴比妥作为诱导药对正氟醚毒性作用有无影响,对不同性别大白鼠的作用有何不同?数据如下:
是否用 不用 不用 不用 不用 用 用 用 用 诱导药 生理盐水 生理盐水 戊巴比妥 戊巴比妥 生理盐水 生理盐水 戊巴比妥 戊巴比妥 性别 雌性 雄性 雌性 雄性 雌性 雄性 雌性 雄性 5.68 5.52 5.50 6.46 5.6 7.02 4.6 5.7 肝重与体重之比 5.26 5.00 5.87 6.13 5.42 6.3 4.64 6.02
5.83 5.38 6.20 5.21 5.7 5.9 5.44 5.48
2、在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?
3、研究5种类型的军装在两种环境、两种活动状态下的散热效果,将100名受试者随机等分20组,观察指标为受试者的主观热感觉,结果如下:
军装类型 活动环境 活动状态 a1 0.3 0.1 a2 0.25 -0.25 1
方差分析举例
方差分析举例 一、什么是方差分析
例1:某饮料生产企业研制出一种新型饮料。饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同,先从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表10-1。
表10-1 该饮料在五家超市的销售情况 单位:箱
超市 1 2 3 4 5 合计 无色 26.5 28.7 25.1 29.1 27.2 136.6 粉色 31.2 28.3 30.8 27.9 29.6 147.8 橘黄色 27.9 25.1 28.5 24.2 26.5 132.2 绿色 30.8 29.6 32.4 31.7 32.8 157.3 问饮料的颜色是否对销售量产生影响。
解:从表10-1中看到,20个数据各不相同,其原因可能有两个方面: 一是销售地点不同的影响。
即使是相同颜色的饮料,在不同超市的销售量也是不同的。但是,由于这五个超市地理位置相似、经营规模相仿,因此,可以把不同地点产品销售量的差异看成是随机因素的影响。
二是饮料颜色不同的影响。
即使在同一个超市里,不同颜色的饮料的销售量也是不同