层次分析法模型
“层次分析法模型”相关的资料有哪些?“层次分析法模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“层次分析法模型”相关范文大全或资料大全,欢迎大家分享。
层次分析法模型
二、模型的假设
1、假设我们所统计和分析的数据,都是客观真实的;
2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性和普遍性,基本上能够集中反映毕业生就业实际情况;
3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略.
三、符号说明
层次分析法 模型CI 一致性度量指标 Ci 层次分析法中的第i个因素 C 正互反矩阵 ?max正互反矩阵的最大特征值 Q 模型中第三层每个方案对第二层中每个因素的权向量构成的矩阵 CR 一致性比率 Q0k 归一化权向量 x(k)参照列 ?(k)i关联系数 灰色关联度模型 x(k)i第i行第k列的元素 ?(k)即x(k)?x(k)i0i ?maxmaxmaxx(k)?x(k) ik0i ?minminminx(k)?x(k) ik0i ??k 第k个指标的权重 mki 加权关联度,即??(k)?k iEXi 主成分分析模型XXii的期望值 DXi的方差 R0 所有单位向量的集合 样本相关矩阵 R ?i 单位特征向量 四、模型的分析与建立
1、问题背景的理解
随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理
层次分析法模型
二、模型的假设
1、假设我们所统计和分析的数据,都是客观真实的;
2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性和普遍性,基本上能够集中反映毕业生就业实际情况;
3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略.
三、符号说明
层次分析法 模型CI 一致性度量指标 Ci 层次分析法中的第i个因素 C 正互反矩阵 ?max正互反矩阵的最大特征值 Q 模型中第三层每个方案对第二层中每个因素的权向量构成的矩阵 CR 一致性比率 Q0k 归一化权向量 x(k)参照列 ?(k)i关联系数 灰色关联度模型 x(k)i第i行第k列的元素 ?(k)即x(k)?x(k)i0i ?maxmaxmaxx(k)?x(k) ik0i ?minminminx(k)?x(k) ik0i ??k 第k个指标的权重 mki 加权关联度,即??(k)?k iEXi 主成分分析模型XXii的期望值 DXi的方差 R0 所有单位向量的集合 样本相关矩阵 R ?i 单位特征向量 四、模型的分析与建立
1、问题背景的理解
随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理
层次分析法
(一)层次分析法 1、层次分析法的概念
“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。”1
2、层次分析法的主要步骤 (1)构建层次分析的结构模型
首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次。其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。
1
张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年
层次分析法的结构模型
在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指标,C层次为方案
层次分析法
一、概念概述
(一)层次分析法(Analytic Hierarchy Process 简称AHP) 是美国运筹学家匹茨堡大学教授萨蒂于本世纪70 年代初提出的一种层次权重决策分析方法。它是一种将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。它不仅可以直接用于多目标、多层次、难于完全用定量方法进行分析决策的系统工程问题,而且也是多目标决策问题中解析地确定各项指标权重的一种有效方法。它将人的主观判断用数量形式表达和处理的方法。
陈永安.基于层次分析法的高校中层干部绩效考评指标体系设计[J].龙岩学院学报2010(4):1
(二)层次分析法,即Analytic Hierarchy Process,简称AHP ,是由Satty提出的一种多准则决策方法,该种方法具有定量和定性相结合处理各种决策因素的特点,再加上其具有简洁、灵活以及系统等方面的优点,致使其被广泛的应用在经济、社会以及电网等众多领域中。层次分析法的原理表现为:建立清晰的层次结构,建立方案属性决策表,以此分析复杂的问题,然后引入测度理论,经过比较后,用相对标度把人的判断标准进行量化处理,形成判断矩阵,通过求解判断矩阵的权重,计算出决策方案的综合权重
层次分析法
(一)层次分析法 1、层次分析法的概念
“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。”1
2、层次分析法的主要步骤 (1)构建层次分析的结构模型
首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次。其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。
1
张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年
层次分析法的结构模型
在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指标,C层次为方案
层次分析法
1.层次分析法简介
层次分析法(The Analytic Hierarchy Process 即AHP)是由美国运筹学家、匹兹堡大学教授T.L.Saaty于20世纪70年代创立的一种系统分析和决策的的综合评价方法,是充分研究了人类的思维过程而提出来的,它是一种定性和定量分析相结合的多目标决策方法。AHP的主要特点是通过递阶层次结构,把人类的判断转化到若干因素的两两比较重要性上,从而把难以量化的定性判断转化为可操作的重要度的比较上面。AHP的本质是把复杂因素分解成多个组成因素,又将这些因素按支配关系分别形成递阶层次结构,通过两两比较的方法确定决策方案相对重要度的总排序。层次分析法社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用。 2.层次分析法原理
2.1建立系统合理的层次结构模型
复杂问题的决策由于所涉及的因素多而复杂,于是处理起来就比较的困难。在应用APH过程中,将所处理的问题涉及的因素条理化、层次化,构造一个有层次的结构模型。在构造的结构模型下,将复杂问题的因素分解成若干个部分,将其称之为元素,这些元素又按其自身的属性及关系形成若干层次,上一层的元素对下一层的有关元素起支配
层次分析法
层次分析法
(analytic hierarchy process,AHP)
一、概述
将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上对人的主观判断做定量描述的一种分析方法。它并不是一种数学模型,而是定量分析与定性分析相结合的典范。
基本步骤:
1、将问题概念化,找出研究对象所涉及的主要因素。
2、分析各因素的关联、隶属关系,构造系统的递阶层次结构。
3、对同一层次的各因素关于上一层次中某一准则的重要性进行两两比较,构造判断矩阵。 4、由判断矩阵计算被比较因素对上一层次该准则的相对权重,并进行一致性检验。
5、计算各层次因素相对于最高层次,即系统目标的合成权重,进行层次总排序,并进行一致性检验。
二、基本原理与计算方法 (一)递阶层次结构
目标层:最高层,只有一个元素
准则层:中间层,可以分为若干个层次 方案层:最底层,也就是措施层
完全层次关系:如果某个元素与下一层次中的所有元素都有关系 不完全层次关系:如果某个元素只与下一层次中的部分元素有关系 完全层次结构:如果一个递阶层次结构的所有层次都是完全层次关系 不完全层次结构:反之
主要特征:
1.从上到下顺序地存在支配关系
2.整个结构中层次数不受限制,最高层次的元素即
3 层次分析法
3 层次分析法
层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。本章简单地介绍层次分析法的主要内容,详细内容可参考文献[1]。
3.1 引言
在日常生活和科学研究中,我们经常面临着具有多因素影响的决策评价问题。这些因素中有些是可以定量描述的指标,有些却是无法定量刻画的定性指标,只能从性质上比较各指标的强弱。在处理这种复杂而模糊的问题时,如何尽可能地克服因主观臆断而造成的片面性,系统而全面地比较分析指标,从而科学地做出评价决策呢?美国学者T.L.Satty于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,这就是层次分析法(Analytic Hiearchy Process),简称AHP。
层次分析法是一种比较简明的决策思维方式,它是把复杂的决策问题分解为多种组成属性,并将这些属性指标按支配关系分组形成有序的递阶结构,通过两两比较的方式确定层次中各指标的相对重要
3 层次分析法
3 层次分析法
层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。本章简单地介绍层次分析法的主要内容,详细内容可参考文献[1]。
3.1 引言
在日常生活和科学研究中,我们经常面临着具有多因素影响的决策评价问题。这些因素中有些是可以定量描述的指标,有些却是无法定量刻画的定性指标,只能从性质上比较各指标的强弱。在处理这种复杂而模糊的问题时,如何尽可能地克服因主观臆断而造成的片面性,系统而全面地比较分析指标,从而科学地做出评价决策呢?美国学者T.L.Satty于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,这就是层次分析法(Analytic Hiearchy Process),简称AHP。
层次分析法是一种比较简明的决策思维方式,它是把复杂的决策问题分解为多种组成属性,并将这些属性指标按支配关系分组形成有序的递阶结构,通过两两比较的方式确定层次中各指标的相对重要
层次分析法讲义
综合评价作业
某市共有四所医院,需要通过医疗质量指标、医疗工作量指标和医疗工作效率指标等3个方面共7个具体指标(如图1),建立合理的模型对医院质量进行评价.
医院工作质量 医疗工作效率 医疗工作量 医疗质量 实际病床使用率 病床利用 效率 日均门诊人数 日均住院人数 病房 有效率 病房病死率 急诊占总人数比例 图1. 目标树
该市某年4所医院的相关指标实际值如表1所示.
表1. 四所医院相关指标值
均每天住均每天门急诊占总有效率% 病死率% 院人次诊人次诊疗% 数% 数% 93 2 5 20 1050 95.3 1.6 5.63 27.17 1305.2 93.2 2.3 3.42 26.27 1932.3 92.4 1.1 3.19 28.59 1965.9 95.2 1.6 5.43 23.85 933.3 指标 项目 期望值 A医院 B医院 C医院 D医院 病床利用率值 5050 5910 5673 5854 4081 实际病床使用率值 93 99.9 100.3 100.0 92.9
第一章 导论
§1.1 综合评价的基本概念 §1.2 常规的两个评价实例 §1.3 评价指标的选取 §1.4 数据的无量纲化方法