圆锥曲线的范围和最值问题技巧结论

“圆锥曲线的范围和最值问题技巧结论”相关的资料有哪些?“圆锥曲线的范围和最值问题技巧结论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线的范围和最值问题技巧结论”相关范文大全或资料大全,欢迎大家分享。

圆锥曲线中的最值和范围问题

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

圆锥曲线专题:圆锥曲线中的最值和范围问题

热点透析

与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:

(1)结合定义利用图形中几何量之间的大小关系;典型例题:<<考一本>>

(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;

(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;

(6)构造一个二次方程,利用判别式??0。 突破重难点

x2?y2?1上移动,试求|PQ|的最大值。 【例1】已知P点在圆x+(y-4)=1上移动,Q点在椭圆92

2

解:先让Q点在椭圆上固定,显然当PQ通过圆心O1时|PQ|最大,因此要求|PQ|的最大值,只要求|O1Q|

222

的最大值.设Q(x,y),则|O1Q|= x+(y-4) ①

22

因Q在椭圆上,则x=9(1-y) ②

1??将②代入①得|O1Q|= 9

圆锥曲线中的最值和范围问题

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

圆锥曲线专题:圆锥曲线中的最值和范围问题

热点透析

与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:

(1)结合定义利用图形中几何量之间的大小关系;典型例题:<<考一本>>

(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;

(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;

(6)构造一个二次方程,利用判别式??0。 突破重难点

x2?y2?1上移动,试求|PQ|的最大值。 【例1】已知P点在圆x+(y-4)=1上移动,Q点在椭圆92

2

解:先让Q点在椭圆上固定,显然当PQ通过圆心O1时|PQ|最大,因此要求|PQ|的最大值,只要求|O1Q|

222

的最大值.设Q(x,y),则|O1Q|= x+(y-4) ①

22

因Q在椭圆上,则x=9(1-y) ②

1??将②代入①得|O1Q|= 9

圆锥曲线范围最值与图形存在

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

圆锥曲线的范围问题

x221.设P是椭圆2?y?1(a?1)短轴的一个端点,Q为椭圆上的动点,求|PQ|的最大值.

a

2.设F1,F2分别是椭圆的左右焦点,若是P椭圆上的一个动点,求|PF1||PF2|的最大值和最小值.

3.在平面直角坐标系中,已知点F(2,2)及直线l:x?y?2?0,曲线C1是满足下列两个条件的动点P(x,y)的轨迹:①PF?2d,其中d是P到直线l的距离;

?x?0?.②?y?0?2x?2y?5?

(1) 求曲线C1的方程;

x2y2(2) 若存在直线m与曲线C1、椭圆C2:2?2?1(a?b?0)均相切于同一点,求椭圆C2ab离心率e的取值范围.

一、利用题设中已有的不等关系建立不等式

2.过点B(0,1)的直线l1交直线x?2于P(2,y0),过点B?(0,?1)的直线l2交

x0?y0?1,l1?l2?M. 2(1)求动点M的轨迹C的方程;

(2)设直线l与C相交于不同的两点S、T,已知点S的坐标为(-2,0),

x轴于P?(x0,0)点,

点Q(0,m)在线段ST的垂直平分线上,且QS?QT≤4,求实数m的取值范围.

1

解 (1)由题意,直线l1的方程是y??1?y0xx?1,∵

圆锥曲线重要结论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

圆锥曲线中的重要性质经典精讲上

性质一:椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆

双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b)

x2y2??1上,F1,F2为椭圆之左右焦点,点G为△F1PF2内心,试1.已知动点P在椭圆43求点G的轨迹方程.

x2y2??1上,F1,F2为双曲线之左右焦点,圆G是△F1PF2的内2.已知动点P在双曲线

43切圆,探究圆G是否过定点,并证明之.

性质二:圆锥曲线的焦点弦的两个焦半径倒数之和为定值。

椭圆的焦点弦的两个焦半径倒数之和为常数

112?? |AF1||BF1|ep双曲线的焦点弦的两个焦半径倒数之和为常数 AB在同支时

112112?? AB在异支时|?|? |AF1||BF1|ep|AF1||BF1|ep112?? |AF||BF|ep抛物线的焦点弦的两个焦半径倒数之和为常数

x2y2??1,F为椭圆之左焦点,过点F的直线交椭圆于A,B两点,是否存在 3.已知椭圆43实常数?,使AB??FA?FB恒成立.并由此求∣AB∣的最小值.

1

性质三:圆锥曲线相互垂直的焦点弦长倒数之和为常数

112?e2椭圆互相垂直的焦点弦倒数之和为常数 ??|AB||

圆锥曲线常用结论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

圆锥曲线常用结论

一.椭 圆

1.以焦点弦PQ为直径的圆必与对应准线相离.

2.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.

x0xy0yx2y2?2?1. ??13.若P在椭圆上,则过的椭圆的切线方程是(x,y)P0000a2ba2b2x2y24.若P0(x0,y0)在椭圆2?2?1外 ,则过P0作椭圆的两条切线切点为P1、P2,则切点弦

abxxyyP1P2的方程是02?02?1.

abx2y25.椭圆2?2?1(a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点

ab??F1PF2??,则椭圆的焦点角形的面积为S?F1PF2?b2tan.

2x2y26.椭圆2?2?1(a>b>0)的焦半径公式:|MF1|?a?ex0,|MF2|?a?ex0.

ab7.设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交焦点F对应的准线于M、N两点,则MF⊥NF.

8.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.

22bxy9.AB是椭圆2?2?1的不平行于对称轴的弦,M(x0,y0)为AB的中点,则kO

圆锥曲线最值问题求解的六种策略

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

圆锥曲线最值问题求解的六种策略

上海中学数学?2011年第5期35 圆锥曲线最值问题求解的六种策略 317523浙江省温岭市泽国中学王强 圆锥曲线中最值问题是高中数学的重点 内容,是高考中的一类常见问题,由于它能很 好地考查学生的逻辑思维能力,体现了圆锥 曲线与三角,函数,不等式,方程,平面向量等 代数知识之间的横向联系,使问题具有高度 的综合性和灵活性.圆锥曲线中的最值问题, 通常有两类:一类是有关长度,面积,角度等 的最值问题;另一类是圆锥曲线中有关几何 元素的最值问题.这些问题往往通过回归定 义,结合几何知识,建立目标函数,利用函数 的性质或不等式等知识以及观图,设参,转 化,替换等途径来解决. 一

,利用圆锥曲线定义

圆锥曲线的定义统一刻画了动点与两定点 距离和或差的不变性,或者动点到定点,定直线

距离比的不变性.利用这种不变关系将动态与 静态结合,解题策略是转化思想,通过”化曲为 AF=,又AG=,易得EC=4,FG=, 046√6 1

由余弦定理可得cos//AFG一一÷,故二面角’ A—DE~C的大小为120..

点评:思路3抓住DE_l-面BCE这一有利 条件,依据”一条直线垂直于两个平行平面中的 一

个平面,那么它也垂直于另

圆锥曲线部分常见结论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

沈阳市第三十一中学 李曙光编辑整理,希望对大家有帮助,疏漏之处请指正 椭圆常见结论

焦点的位置 焦点在x轴上 焦点在y轴上 图形 标准方程 x2y2?2?1?a?b?0? 2ab?a?x?a且?b?y?b y2x2?2?1?a?b?0? 2ab?b?x?b且?a?y?a 范围 ?1??a,0?、?2?a,0? 顶点 ?1?0,?a?、?2?0,a? ?1??b,0?、?2?b,0? ?1?0,?b?、?2?0,b? 轴长 焦点 焦距 对称性 短轴的长?2b 长轴的长?2a F1??c,0?、F2?c,0? F1?0,?c?、F2?0,c? F1F2?2c?c2?a2?b2? 关于x轴、y轴、原点对称 离心率 cb2e??1?2?0?e?1?e越小,椭圆越圆;e越大,椭圆越扁aa 1.椭圆的两焦点分别为F1,F2,P是椭圆上任意一点,则有以下结论成立: (1)PF1?PF2?2a; (2)a?c?PF1?a?c; (3)b?PF1?PF2?a;

22x2y22. 椭圆的方程为2?2?1(a>b>0), 左、右焦点分别为F1,F2,P?x0,y0?是椭圆上

ab任

,

:

(1)

b22a2222y0?2?a?x0?,x0?2?b?

圆锥曲线利用点的坐标解决圆锥曲线问题

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

第九章 利用点的坐标处理解析几何问题 解析几何

利用点的坐标处理解析几何问题

有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:

1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:

(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受

x1?x2,x1x2,y1?y2,y1y2形式的约束

(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点

圆锥曲线利用点的坐标解决圆锥曲线问题

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

第九章 利用点的坐标处理解析几何问题 解析几何

利用点的坐标处理解析几何问题

有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:

1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:

(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受

x1?x2,x1x2,y1?y2,y1y2形式的约束

(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点

高中数学圆锥曲线小结论

标签:文库时间:2024-11-21
【bwwdw.com - 博文网】

椭 圆

1. 点P处的切线PT平分△PF1F2在点P处的外角.

2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ为直径的圆必与对应准线相离.

4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.

xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.

ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.

ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面

ab?积为S?F1PF2?b2tan.

2x2y2椭圆2?2?1(a>b>0)的焦半径公式:

ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).

8.

9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F

的椭圆准线于M、N两点,则MF⊥NF.