历年考研数学一真题及答案

“历年考研数学一真题及答案”相关的资料有哪些?“历年考研数学一真题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“历年考研数学一真题及答案”相关范文大全或资料大全,欢迎大家分享。

考研数学一历年真题1995

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

1995年全国硕士研究生入学统一考试

数学(一)试卷

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)

2(1)lim(1 3xsinx

x 0

)

=_____________.

(2)d0dx

x2xcost2

dt= _____________. (3)设(a b) c 2,则[(a b) (b c)]

(c a)=_____________.

(4)幂级数 n2n 1n ( 3)

n

x的收敛半径R=_____________. n 12 1 00

3

(5)设三阶方阵A,B满足关系式A 1

BA 6A BA,且A 0

1

40 ,则B=_____________.

00

1 7

二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)设有直线L

: x 3y 2z 1 0

2x y 10z 3 0

,及平面 :4x 2y z 2 0,则直线L

(A)平行于 (B)在 上 (C)垂直于

(D)与 斜交

(2)设在[0,1]上f (x) 0,则f (0),f (1),f(1) f(0)或f(0) f(1)的大小顺序是

考研数学一历年真题1995

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

1995年全国硕士研究生入学统一考试

数学(一)试卷

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)

2(1)lim(1 3xsinx

x 0

)

=_____________.

(2)d0dx

x2xcost2

dt= _____________. (3)设(a b) c 2,则[(a b) (b c)]

(c a)=_____________.

(4)幂级数 n2n 1n ( 3)

n

x的收敛半径R=_____________. n 12 1 00

3

(5)设三阶方阵A,B满足关系式A 1

BA 6A BA,且A 0

1

40 ,则B=_____________.

00

1 7

二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)设有直线L

: x 3y 2z 1 0

2x y 10z 3 0

,及平面 :4x 2y z 2 0,则直线L

(A)平行于 (B)在 上 (C)垂直于

(D)与 斜交

(2)设在[0,1]上f (x) 0,则f (0),f (1),f(1) f(0)或f(0) f(1)的大小顺序是

历年考研数学一真题及答案(1987-2015)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

1

历年考研数学一真题

1987-2014 (经典珍藏版)

1987年全国硕士研究生入学统一考试

数学(一)试卷

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)

(1)当x =_____________时,函数2x y x =?取得极小值.

(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.

1x =

(3)与两直线 1y t =-+

2z t =+

及121

111

x y z +++=

=

都平行且过原点的平面方程为_____________.

(4)设L 为取正向的圆周229,x y +=则曲线积分

2(22)(4)L

xy y dx x x dy -+-?

= _____________.

(5)已知三维向量空间的基底为

123(1,1,0),(1,0,1),(0,1,1),

===ααα则向量(2,0,0)=β在

此基底下的坐标是_____________.

二、(本题满分8分) 求正的常数

a

,

b 使等式

2

01lim 1sin x x bx x →=-?成立.

三、(本题满分7分)

2

(1)设

f

g

为连续可微函数

,(,),(),u f x xy v g x xy ==+求

,.u v x x

历年考研数学一真题及答案(1987-2013)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

历年考研数学一真题1987-2013

(经典珍藏版)

1987年全国硕士研究生入学统一考试

数学(一)试卷

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)

(1)当x =_____________时,函数2x y x =?取得极小值.

(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平

面图形的面积是_____________.

1x = (3)

与两直线 1y t =-+

2z t

=+

121

111

x y z +++==都平行且过原点的平面方程为

_____________.

(4)设

L

为取正向的圆周2

2

9,x y +=则曲线积分

2(22)(4)L

xy y dx x x dy -+-?

= _____________.

(5)已知三维向量空间的基底为

123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的

坐标是_____________.

二、(本题满分8分)

求正的常数a 与,b 使等式2

01lim 1sin x x bx x →=-?成立.

三、(本题满分7分)

(1)设f 、g 为连续可微函数,(,),(),

u f x xy v g x xy =

=+求

,.u v x x

??

历年考研数学一真题及答案(1987-2013)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

历年考研数学一真题1987-2013

(经典珍藏版)

1987年全国硕士研究生入学统一考试

数学(一)试卷

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)

(1)当x =_____________时,函数2x y x =?取得极小值.

(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平

面图形的面积是_____________.

1x = (3)

与两直线 1y t =-+

2z t

=+

121

111

x y z +++==都平行且过原点的平面方程为

_____________.

(4)设

L

为取正向的圆周2

2

9,x y +=则曲线积分

2(22)(4)L

xy y dx x x dy -+-?

= _____________.

(5)已知三维向量空间的基底为

123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的

坐标是_____________.

二、(本题满分8分)

求正的常数a 与,b 使等式2

01lim 1sin x x bx x →=-?成立.

三、(本题满分7分)

(1)设f 、g 为连续可微函数,(,),(),

u f x xy v g x xy =

=+求

,.u v x x

??

历年考研数学一真题及答案(1987-2014) - 图文

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

历年考研数学一真题1987-2014

(经典珍藏版)

1987年全国硕士研究生入学统一考试

数学(一)试卷

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)

(1)当x=_____________时,函数y?x?2x取得极小值.

(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平

面图形的面积是_____________.

1?x

(3)与两直线 y??1?t

z?2?t

x?1y?1?2z?11?1都平行且过原点的平面方程为

_____________.

(4)设

L为取正向的圆周x2?y2?9,则曲线积分

??L(2xy?2y)dx?(x2?4x)dy= _____________.

(5)已知三维向量空间的基底为

α1?(1,1,0),α2?(1,0,1),α3?(0,1,1),则向量β?(2,0,0)在此基底下的

坐标是_____________.

二、(本题满分8分)

求正的常数a与b,使等式lim1xt2x?0bx?sinx?0a?t2dt?1成立.

三、(本题满分7分)

(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求

?u?x,?v?x. (2)设矩阵

A

B满足关系

历年考研数学一真题及答案(1987-2014) - 图文

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

历年考研数学一真题1987-2014

(经典珍藏版)

1987年全国硕士研究生入学统一考试

数学(一)试卷

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)

(1)当x=_____________时,函数y?x?2x取得极小值.

(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平

面图形的面积是_____________.

1?x

(3)与两直线 y??1?t

z?2?t

x?1y?1?2z?11?1都平行且过原点的平面方程为

_____________.

(4)设

L为取正向的圆周x2?y2?9,则曲线积分

??L(2xy?2y)dx?(x2?4x)dy= _____________.

(5)已知三维向量空间的基底为

α1?(1,1,0),α2?(1,0,1),α3?(0,1,1),则向量β?(2,0,0)在此基底下的

坐标是_____________.

二、(本题满分8分)

求正的常数a与b,使等式lim1xt2x?0bx?sinx?0a?t2dt?1成立.

三、(本题满分7分)

(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求

?u?x,?v?x. (2)设矩阵

A

B满足关系

历年考研数学一真题及答案(1987-2014) - 图文

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

历年考研数学一真题1987-2014

(经典珍藏版)

1987年全国硕士研究生入学统一考试

数学(一)试卷

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)

(1)当x=_____________时,函数y?x?2x取得极小值.

(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平

面图形的面积是_____________.

1?x

(3)与两直线 y??1?t

z?2?t

x?1y?1?2z?11?1都平行且过原点的平面方程为

_____________.

(4)设

L为取正向的圆周x2?y2?9,则曲线积分

??L(2xy?2y)dx?(x2?4x)dy= _____________.

(5)已知三维向量空间的基底为

α1?(1,1,0),α2?(1,0,1),α3?(0,1,1),则向量β?(2,0,0)在此基底下的

坐标是_____________.

二、(本题满分8分)

求正的常数a与b,使等式lim1xt2x?0bx?sinx?0a?t2dt?1成立.

三、(本题满分7分)

(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求

?u?x,?v?x. (2)设矩阵

A

B满足关系

1994考研数学一真题及答案详解

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

1994考研数学一真题及答案详解

1994年全国硕士研究生入学统一考试数学一试题

一、填空题(本题共5个小题,每小题3分,满分15分.) (1) limcotx(

x 0

11

) sinxx

(2) 曲面z ez 2xy 3在点(1,2,0)处的切平面方程为1x 2u

(3) 设u esin,则在点(2,)处的值为_____________.

y x y

x

x2y2

(4) 设区域D为x y R,则 (2 2)dxdy _____________.

abD

2

2

2

nTT

(5) 已知 (1,2,3), (1,,),设A ,其中 是 的转置,则A 1123

二、选择题(本题共5个小题,每小题3分,满分15分.)

sinx4342

(1) 设M cosxdx,N (sinx cosx)dx,P 2 (x2sin3x cos4x)dx, 2 1 x222

2

则 ( )

(A) N P M (B) M P N (C) N M P

2010年考研数学一真题及答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

2010年考研数学一真题

一、选择题(1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。)

(1)极限lim

x→∞[x2

(x?a)(x+b)

]x=

(A)1 (B)e (C)e a?b(D)e b?a 【考点】C。

【解析】

【方法一】

这是一个“1∞”型极限

lim x→∞[x2

(x?a)(x+b)

]x=lim

x→∞

{[1+(a?b)x+ab

(x?a)(x+b)

]

(x?a)(x+b)

(a?b)x+ab}

(a?b)x+ab

(x?a)(x+b)

x=e a?b

【方法二】

原式=lim

x→∞e xln

x2

(x?a)(x+b)

而lim

x→∞ xln x2

(x?a)(x+b)

=lim

x→∞

xln(1+(a?b)x+ab

(x?a)(x+b)

)

=lim

x→∞

x?(a?b)x+ab

(x?a)(x+b)

(等价无穷小代换) =a?b

则lim

x→∞[x2

(x?a)(x+b)

]x=e a?b

【方法三】

对于“1∞”型极限可利用基本结论:

若limα(x)=0, limβ(x)=0,且limα(x)β(x)=A 则li m(1+α(x))β(x)=e A,求极限

由于lim

x→∞α(x)β(x)=lim

x→∞

x2?(x?a)(x+b)

(x?a)(x+