现代催化研究方法
“现代催化研究方法”相关的资料有哪些?“现代催化研究方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“现代催化研究方法”相关范文大全或资料大全,欢迎大家分享。
催化研究方法
第二章 物理吸附
1. 描述物理与化学吸附. 答:物理吸附
a.物理吸附是吸附质分子靠范德华力(分子引力)在吸附剂表面上吸附,它类似于蒸汽的凝聚和气体的液化。
b表面上剩余力场是表面原子配位不饱和造成的,作用力较弱,致使物理吸附分子的结构变化不大,接近于原气体或液体中分子的状态。
c.物理吸附由于是范式力起作用,而范式力在同类或不同类的任何分子间都存在,所以是非专一性的,在表面上可吸附多层。 化学吸附
a.化学吸附类似于化学反应,吸附质分子与吸附剂表面原子间形成吸附化学键。 b.被化学吸附的分子与原吸附质分子相比,由于吸附键的强烈影响,结构变化较大。 c.由于化学吸附同化学反应一样只能在特定的吸附剂-吸附质之间进行所以具有专一性,并且在表面只能吸附一层。
物理吸附提供了测定催化剂表面积、平均孔径及孔径分布的方法。物理吸附是化学吸附全过程的一个重要步骤,化学吸附现象一定会以物理吸附过程为先导。其区别见下表: 性质 吸附力 吸附热 吸附速率 吸附层 吸附温度 吸附稳定性 选择性
物理吸附 范德华力
较小,与液化热相似
较快,不受温度影响,一般不需要
活化能
单分子层或多分子层 沸点一下或低于临界温度 不稳定,常可完全脱附
无选择性
化学吸
现代建筑设计方法研究
现代建筑设计方法研究
摘要:近些年建筑工程的规模不断扩大,需要占用更多资源和能源,面对低碳节能环保理念的提出,建筑学家开始关注建筑对于环境造成的负面影响。实现建筑和环境的和谐发展,就要采用现代的建筑设计方式方法,降低对于资源的占用,改变传统的建筑模式,实现社会经济的可持续发展。本文主要探讨了建筑设计的基本原则以及现代的建筑设计方法,希望能够促进建筑行业的健康发展。
关键词:现代建筑;设计方法;原则;可持续发展
Abstract: in recent years building project scale unceasingly expands, the need to take up more resources and energy, facing the low carbon energy conservation and environmental protection concept of architectural experts began to focus on building for environmental impact of. Realize the harmonious development of the bu
现代药理学研究方法
精心制作PDF.
《现代药理学研究方法》
第一章 现代药理学实验方法与技术简介
第一节 分子生物学试验方法与技术
分子生物技术在药理学实验中应用较为广泛,包括核酸分子探针的标记、核酸分子杂交、多聚酶链反应、蛋白印迹杂交技术、cDNA文库、随机分子库技术、外核基因在真核细胞中的表达、转基因动物、人类基因治疗等。现将更为常用的技术介绍如下:
一、核酸分子探针的标记 标记核酸分子探针(nucleic acid probe)是进行核杂交的基础,根据核酸分子探针的来源及性质进行选择,选择的基本原则是具有高度的特异性,探针选择直接影响杂交结果的分析。根据检测对象和目的不同,,可选择不同的探针种类及标记方法。
㈠ 探针种类
1.基因组DNA探针 是克隆化的各种基因片断,也是最常用的核酸探针,探针应尽可能选用基因编码(外显子),避免使用内含子及其它非编码序列。
2.cDNA探针 与mRNA互补的DNA链称cDNA,是一种较为理想的核酸探针,特异性较高。
3.RNA探针 RNA与RNA或DNA杂交体的探针稳定性,特异性高。
4.寡核苷酸探针 人工合成寡核苷酸片段做探针,可根据需要合成相应序列。
㈡ 标记物
常用的探针标记物有两类:放射性同位素和非放射性同位素。标记物的检测
现代药理学研究方法
精心制作PDF.
《现代药理学研究方法》
第一章 现代药理学实验方法与技术简介
第一节 分子生物学试验方法与技术
分子生物技术在药理学实验中应用较为广泛,包括核酸分子探针的标记、核酸分子杂交、多聚酶链反应、蛋白印迹杂交技术、cDNA文库、随机分子库技术、外核基因在真核细胞中的表达、转基因动物、人类基因治疗等。现将更为常用的技术介绍如下:
一、核酸分子探针的标记 标记核酸分子探针(nucleic acid probe)是进行核杂交的基础,根据核酸分子探针的来源及性质进行选择,选择的基本原则是具有高度的特异性,探针选择直接影响杂交结果的分析。根据检测对象和目的不同,,可选择不同的探针种类及标记方法。
㈠ 探针种类
1.基因组DNA探针 是克隆化的各种基因片断,也是最常用的核酸探针,探针应尽可能选用基因编码(外显子),避免使用内含子及其它非编码序列。
2.cDNA探针 与mRNA互补的DNA链称cDNA,是一种较为理想的核酸探针,特异性较高。
3.RNA探针 RNA与RNA或DNA杂交体的探针稳定性,特异性高。
4.寡核苷酸探针 人工合成寡核苷酸片段做探针,可根据需要合成相应序列。
㈡ 标记物
常用的探针标记物有两类:放射性同位素和非放射性同位素。标记物的检测
材料现代研究方法7章
吉林大学材料加工专业课 材料现代研究方法7章
第七章 宏观应力测定
吉林大学材料加工专业课 材料现代研究方法7章
第一节 引言内应力可分为三类: 内应力可分为三类: 第一类(宏观内应力 : 第一类 宏观内应力):应力在整个工作或较大区域内 宏观内应力 取得平衡。 取得平衡。 第二类(微观应力 :晶粒范围(晶粒 亚晶粒之间) 晶粒、 第二类 微观应力):晶粒范围 晶粒、亚晶粒之间 微观应力 第三类(超微观应力):晶格畸变。 第三类(超微观应力):晶格畸变。 超微观应力 射线作用下)衍射花样改变 应力存在 →(在X射线作用下 衍射花样改变 在 射线作用下 第一类内应力:使衍射线位移。 第一类内应力:使衍射线位移。 第二类内应力:使衍射线变宽。 第二类内应力:使衍射线变宽。 第三类内应力:使衍射线强度减弱。 第三类内应力:使衍射线强度减弱。
吉林大学材料加工专业课 材料现代研究方法7章
本章限于介绍宏观应力的测定应力测定的用途: 应力测定的用途: 1、检查表面强化处理工艺 、 2、预测零件疲劳强度的储备 、 3、控制切削加工 、 4、检查消除应力的工艺效果 、
X法测定内应力的特点: 法测定内应力的特点: 法测定内应力的特点1、是无损(非破坏性 的检验方法 、
催化剂制备方法
一
催化剂制备 共沉淀法
按照 Co3O4和 CeO2在催化剂中的比例,计算出所需 0.5mol/L Ce(NO3)3溶液的体积和 Co(NO3)2?6H2O 的质量。将钴、铈的硝酸盐混合溶液与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的 pH 值在 8.5~9.5 之间。在室温下搅拌 3 小时。按 50mL 蒸馏水/g.cat 的比例用 80℃蒸馏水洗涤三次,在 80℃下干燥24 小时,一定温度下焙烧 5 小时,制得不同比例的钴、铈混合氧化物催化剂。 浸渍法
考察制备方法对催化剂的活性影响时,用到了浸渍法,具体步骤如下:取一定量的0.5mol/L Ce(NO3)3溶液,与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH值在8.5~9.5之间。在室温下搅拌3小时。按50mL蒸馏水/g.cat的比例用80℃蒸馏水洗涤三次,在80℃下干燥24小时,得到CeO2载体的前驱体。按比例取一定量的Co(NO3)2?6H2O,采用等体积浸渍方法将Co(NO3)2溶液浸渍于载体前驱体上,再于室温下放置过夜。一定温度下焙烧5小时,制得Co3O4-CeO2催化剂。 活性
原料气空速为40,000ml/h gcat。原料组成为:1 vol.% O2,1
催化剂制备方法
一
催化剂制备 共沉淀法
按照 Co3O4和 CeO2在催化剂中的比例,计算出所需 0.5mol/L Ce(NO3)3溶液的体积和 Co(NO3)2?6H2O 的质量。将钴、铈的硝酸盐混合溶液与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的 pH 值在 8.5~9.5 之间。在室温下搅拌 3 小时。按 50mL 蒸馏水/g.cat 的比例用 80℃蒸馏水洗涤三次,在 80℃下干燥24 小时,一定温度下焙烧 5 小时,制得不同比例的钴、铈混合氧化物催化剂。 浸渍法
考察制备方法对催化剂的活性影响时,用到了浸渍法,具体步骤如下:取一定量的0.5mol/L Ce(NO3)3溶液,与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH值在8.5~9.5之间。在室温下搅拌3小时。按50mL蒸馏水/g.cat的比例用80℃蒸馏水洗涤三次,在80℃下干燥24小时,得到CeO2载体的前驱体。按比例取一定量的Co(NO3)2?6H2O,采用等体积浸渍方法将Co(NO3)2溶液浸渍于载体前驱体上,再于室温下放置过夜。一定温度下焙烧5小时,制得Co3O4-CeO2催化剂。 活性
原料气空速为40,000ml/h gcat。原料组成为:1 vol.% O2,1
催化剂制备方法
一
催化剂制备 共沉淀法
按照 Co3O4和 CeO2在催化剂中的比例,计算出所需 0.5mol/L Ce(NO3)3溶液的体积和 Co(NO3)2?6H2O 的质量。将钴、铈的硝酸盐混合溶液与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的 pH 值在 8.5~9.5 之间。在室温下搅拌 3 小时。按 50mL 蒸馏水/g.cat 的比例用 80℃蒸馏水洗涤三次,在 80℃下干燥24 小时,一定温度下焙烧 5 小时,制得不同比例的钴、铈混合氧化物催化剂。 浸渍法
考察制备方法对催化剂的活性影响时,用到了浸渍法,具体步骤如下:取一定量的0.5mol/L Ce(NO3)3溶液,与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH值在8.5~9.5之间。在室温下搅拌3小时。按50mL蒸馏水/g.cat的比例用80℃蒸馏水洗涤三次,在80℃下干燥24小时,得到CeO2载体的前驱体。按比例取一定量的Co(NO3)2?6H2O,采用等体积浸渍方法将Co(NO3)2溶液浸渍于载体前驱体上,再于室温下放置过夜。一定温度下焙烧5小时,制得Co3O4-CeO2催化剂。 活性
原料气空速为40,000ml/h gcat。原料组成为:1 vol.% O2,1
催化剂制备方法
一
催化剂制备 共沉淀法
按照 Co3O4和 CeO2在催化剂中的比例,计算出所需 0.5mol/L Ce(NO3)3溶液的体积和 Co(NO3)2?6H2O 的质量。将钴、铈的硝酸盐混合溶液与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的 pH 值在 8.5~9.5 之间。在室温下搅拌 3 小时。按 50mL 蒸馏水/g.cat 的比例用 80℃蒸馏水洗涤三次,在 80℃下干燥24 小时,一定温度下焙烧 5 小时,制得不同比例的钴、铈混合氧化物催化剂。 浸渍法
考察制备方法对催化剂的活性影响时,用到了浸渍法,具体步骤如下:取一定量的0.5mol/L Ce(NO3)3溶液,与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH值在8.5~9.5之间。在室温下搅拌3小时。按50mL蒸馏水/g.cat的比例用80℃蒸馏水洗涤三次,在80℃下干燥24小时,得到CeO2载体的前驱体。按比例取一定量的Co(NO3)2?6H2O,采用等体积浸渍方法将Co(NO3)2溶液浸渍于载体前驱体上,再于室温下放置过夜。一定温度下焙烧5小时,制得Co3O4-CeO2催化剂。 活性
原料气空速为40,000ml/h gcat。原料组成为:1 vol.% O2,1
热动力学方法在酶催化反应研究中的应用
热动力学方法在酶催化反应研究中的应用
摘要:本文介绍了热动力学方法在酶催化反应研究中的应用,主要包括酶活性的测定、酶催化反应动力学研究和生化常数的测定、酶抑制、激活动力学研究、还包括在酶反应热力学、物质构效关系研究等方面的应用。
关键词:热动力学;酶;应用
酶是存在于生物体内的一些具有专一性和高催化活性的蛋白质或核酸,它贯穿于生命活动的全过程,生命系统中的各种生物化学反应绝大多数都是在酶催化下完成的。因而对酶催化反应研究对于认识生命活动的本质,揭示生命的奥秘有着重要的意义。
具有非特异性的热动力学方法与具有高选择性和专一性酶催化反应体系相结合,恰好能够优势互补。因此,热动力学方法自建立之始便将酶反应确立为主要研究对象之一,反之,酶催化反应研究也借助热动力学方法这一有力的武器而得到了突飞猛进的发展。热动力学方法在酶催化反应研究中的应用,主要在以下几个方面取得了令人瞩目的成就。 1. 酶活性的测定
与经典的酶活性测定方法相比,热动力学方法的非特异性使其可以广泛地运用于许多酶反应体系的活性检测。热动力学方法作为一种新型的广谱性的酶活性检测方法,既可以用于 酶制品的活性检测,也能够用于生物组织中酶活性测定。不仅具有速度快、操作方便等优点, 而且可以