用向量法研究三角形的性质
“用向量法研究三角形的性质”相关的资料有哪些?“用向量法研究三角形的性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“用向量法研究三角形的性质”相关范文大全或资料大全,欢迎大家分享。
相似三角形的性质
篇一:相似三角形的定义与性质
同学个性化教学设计
年 级: 九年级教 师: 张永慧科 目:数学 班 主 任: 朱敏_ 日 期: _时 段: ___
1 海到无边天作岸,山高绝顶我为峰
校长签字: ___________日期3 海到无边天作岸,山高绝顶我为峰
篇二:相似三角形性质
精锐教育学科辅导讲义
篇三:相似三角形的性质 导学案
《相似三角形的性质》 学案
【学习目标】
知识与技能:理解并运用相似三角形的性质,灵活运用相似三角形的性质解题。 过程与方法:经历探索相似三角形性质的过程,发展逻辑思维能力和应用能力。 情感与价值观:感受数学学习中的推理过程,积极参与推理活动。
【温故知新】
1、相似三角形的判定方法有哪一些?
2、如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE 与△ABC的相似比为 。 3、已知:△ABC△∽ABC,AB=2cm,BC=3cm,AB=4cm, AC=2cm,则AC= cm, BC=cm。
''
''
'''
''
B
【学习过程】
1、自主学习:两个相似三角形,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.
例如,如图:△ABC和△A′B
三角形四心的向量性质及证明
收集(部分证明)了三角形四心相关性质,对高中生更加了解向量和三角形有一定帮助。
符号说明:“AB”表示向量,“|AB|”表示向量的模
【一些结论】:以下皆是向量
1 若P是△ABC的重心PA+PB+PC=0
2 若P是△ABC的垂心PA*PB=PB*PC=PA*PC(内积)
3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)
4 若P是△ABC的外心|PA|=|PB|=|PC|
(AP就表示AP向量 |AP|就是它的模)
5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心
6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心
7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)
或 AP=λ(AB+AC),λ∈[0,+∞) 经过重心
8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,∠C的外角平分线的交点
【以下是一些结论的有关证明】
1.
O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量
充分性:
已知aOA向量+bOB向量+cOC向量=0向量,
延长CO交AB于D,根据向量加法得:
OA=OD+DA,OB=OD+DB,代入已
《相似三角形的性质》说课稿
《相似三角形的性质》说课稿
各位领导、老师们: 大家好!
今天我讲的是九年级数学下册的“27.2.2相似三角形的性质”一课,用的是人教版九年级数学下册数学教材 。
下面,我分四个部分来汇报我对这节课的教学设计,这就是“教材 分析”、“教学方法与教学手段的选择”、“学法指导”和“教学过程的设计” 一、教材分析 1、教材的地位及作用
“相似三角形的性质”是九年级数学下册“相似形”这章的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。它是全等三角形性质的拓展,也是研究相似多边形的基础,这些性质是解决有关实际问题的重要工具。 2、教学目标
根据学生已有的认知基础及本课教材的地位、作用,确定本课的教学目标为: (1)知识目标:使学生掌握相似三角形的性质定理1及其证明方法,能运用
相似三角形性质定理解决问题。
(2)能力目标:通过性质定理的推导,培养学生的逻辑推理能力和动手实践
能力。
(3)德育渗透:通过全等三角形和相似三角形的类比学习,树立学生从特殊
到一般的认识规律,通过先实验后归纳再推理强化学生“实践出真知”的求知意识。
3、教学重、难点
因为相似三角形的性质是解
三角形性质定理小结
三角形相关的性质与定理
三角形
1、 三角形的内角和是180° 2、 三角形的外角和是360°
3、 三角形的任意一个外角都等于和它不相邻的两个内角的和。 4、 三角形的任意一个外角都大于和它不相邻的内角 全等三角形 1、 对应边相等 2、 对应角相等 三角形全等的判定
1.三边对应相等的两个三角形全等(SSS或边边边)
2.两边和它们的夹角对应相等的两个三角形全等(SAS或边角边) 3.两角和它们的夹边对应相等的两个三角形全等。(ASA或角边角)
4.两个角和其中一个角的对边对应相等的两个三角形全等(AAS或角角边) 5.斜边和一条直角边对应相等的两个直角三角形全等(HL或斜边、直角边) 等腰三角形的性质
1.等腰三角形的两个底角相等(等边对等角);
2 “三线合一”.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 等腰三角形的判定
如果一个三角形有两个角相等,那么这两个角所对的边相等。(等角对等边) 等边三角形
等边三角形的性质
1.等边三角形的三个内角相等,并且每一个角都等于60°。 2.三个角都相等的三角形是等边三角形。
3.有一个角是60°的等腰三角形是等边三角形。 直角三角形
5.直角三角形的两个锐角互余
1..在直角
相似三角形性质2
学习目标
1、在理解相似三角形特征的基础上, 掌握相似三角形对应高、对应中线、对 应角平分线、周长、面积的比等性质.
2、通过实践体会相似三角形的性质, 会用性质解决相关的问题.
课前复习:
(1)什么叫相似三角形?
对应角相等、对应边成比例 的三角形,叫做相似三角形. (2)如何判定两个三角形相似?
①两个角对应相等; ②两边对应成比例,且夹角相等; ③三边对应成比例.
课前复习:
(3)相似三角形有何特征?
A A/
B
C
B/
C/
①相似三角形的对应角_____________
②相似三角形的对应边______________
想一想: 它们还有哪些性质呢?
情境引入 一个三角形有三条重要线段: 高、中线、角平分线 ________________ 如果两个三角形相似, 那么这些对应线段有什么关系呢?
ABC ∽ A B C
1 相似比为 2
A
(1)
对应高的比
1 AD 2 _ A D __________
B
D
C A′
B′
D
C′
ABC ∽ A B C
1 相似比为 2
A
(2)
对应中线的比
1 AD 2 A D __________ _
B
D
C A′
B′
D
C′
ABC ∽ A B C
1 相似比为 2 对应角平分线的比
A
(3)
1 AD A
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
三角形四心向量形式
三角形“四心”向量形式的充要条件应用
在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一. 知识点总结
1)O是?ABC的重心?OA?OB?OC?0 若O是?ABC的重心,则
S?BOC?S?AOC?S?AOB?1S?ABC3
故OA?OB?OC?0
2)O是?ABC的垂心?OA?OB?OB?OC?OC?OA 若O是?ABC(非直角三角形)的垂心,
tanB:tanC 则S?BOC:S?AOC:S?AOB?tanA:故tanAOA?tanBOB?tanCOC?0
3)O是?ABC的外心?|OA|?|OB|?|OC|(或OA?OB?OC) 若O是?ABC的外心
:sin?AOC:sin?AOB?sin2A:sin2B:sin2C 则S?BOC:S?AOC:S?AOB?sin?BOC222故sin2AOA?sin2BOB?sin2COC?0
4)O是内心?ABC的充要条件是
OA?(AB|AB|?ACAC)?OB?(BA|BA|?BC|BC|)?OC?(CA|CA|?CB|CB|)?0
引进单位向量,使条件变得更简洁。如果记AB,BC,CA
6.5 相似三角形的性质(2)
数学教学设计教 材:义务教育教科书· 数学(九年级下册) 6.5 相似三角形的性质(2)
1.运用类比的思想方法,通过实践探索得出:相似三角形对应线段(高、中线、角平分线)的比等于相 教学目标 似比; 2.会运用相似三角形对应高的比与相似比的性质解决有关问题; 3.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达能力. 教学重点 教学难点 探索得出相似三角形,对应线段的比等于相似比. 利用相似三角形对应高的比与相似比的性质解决问题. 教学过程(教师) 回顾旧知 如图,△ ABC∽△A′B′C′,△ ABC 与△ A′B′C′的相似比是 2:3,则 △ ABC 与△ A’B’C’的面积比是多少?你的依据是什么? A A′ 运用上节课的知识解决问题. 引导学生回忆上 节课所学的相似三角 B C B′ C′ 形的性质相关内容,为 学习新知识铺垫. 学生活动 设计思路
回顾“相似三角形的面积比等于相似比的平方”这个结论的探究过 程,你有什么发现? 发现新知 相似三角形对应高的比等于相似比. 总结结论,并猜想三角形中其他的特 通过已有知识的 学习,进行大胆的猜 想.
三角形中的特殊线段还有哪些?它们是否也具有类似的性质
等腰与靠边三角形、全等三角形的性质与判定的综合应用
等腰与等边三角形、全等三角形的性质和判定的综合应用
一、等腰、等边三角形
1、已知等腰三角形的一边长为5cm,另一边长为6cm,则它的周长为 。 2、已知等腰三角形的一边长为4cm,另一边长为9cm,则它的周长为 。
3、等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm.则腰长为 。
4、在等腰三角形中,设底角为x,顶角为y0,用含x的代数式表示y,得y= ; EC用含y的代数式表示x,则x= 。 5、有一个角等于50°,另一个角等于 的三角形是等腰三角形。 FDB6、如图,∠A=15°,AB=BC=CD=DE=EF,则∠GEF= 。 7、有一个内角为40°的等腰三角形的另外两个内角的度数为 ,有一个内角为140°的等腰三角形的另外两个内角的度数为 。
8、等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为 。
9、如果等腰三角形的三边均为整数且它的周长为10cm,那么它的三边长为 。 10、如图,把矩形ABCD
初中数学三角形(二)特殊三角形
三角形(二)——特殊三角形
【等腰三角形】
1.有两条边相等的三角形是等腰三角形,等腰三角形是轴对称图形。 2.等腰三角形的两个底角相等(简写成“等边对等角”)。
3.等腰三角形顶角的平分线平分底边并且垂直于底边。(常称为“三线合一”)。 4.如果一个三角形有两个内角相等,则它是等腰三角形。
姓 名: 【典型例题】
例1.已知?ABC中,那么?ABC一定是( ) ?B与?C的平分线的交点P恰好在BC边的高AD上, (A)直角三角形 (B)等边三角形 (C)等腰三角形 (D)等腰直角三角形
第12届(2001年)初二培训
例2.如图2,在?ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC和∠ACB,它们相交于F点,是图中等腰三角形的个数是( )
第14届(2003年)初二培训
图2
例3.等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )。
图1
(A)30° (B)30°或150° (C)120°或150° (D)30°或120°或150°
第10届(1999年)初二第