二元函数极限和连续的关系
“二元函数极限和连续的关系”相关的资料有哪些?“二元函数极限和连续的关系”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二元函数极限和连续的关系”相关范文大全或资料大全,欢迎大家分享。
4.1二元关系和函数
第四章 二元关系和函数
第一节、集合的笛卡儿积与二元关系
有序对ordered pair定义:有两个元素x,y(允许x=y)按给定顺序排列组成
的二元组合称为一个有序对 ,记作<x,y>其中x是它的第一元素,y是它的第二元素。例、平面直角坐标系中的一个点的坐标就构成为一个有序 实数对,我们可用<x,y>表示。 注:有序对是讲究次序的,例<1,3>和<3,1>是表示平面 上两个不同的点,这与集合不同,{1,3}和{3,1}是两个相等的 集合。 性质1:如x y即<x,y> <y ,x>。 性质2:<x,y>=<a,b>的充要条件是x=a,y=b.
n元有序对有序对可推广到n个元素,设A1, A2, …, An是 集合,a1 A1, a2 A2, …, an An是元素,定义有 序n元组(ordered n-tuple)
求二元函数极限几种方法
1.二元函数极限概念分析
定义1 设函数f在D?R2上有定义,P0是D的聚点,A是一个确定的实数.如果对于任意给定的正数?,总存在某正数?,使得P?U0(PD时,都有 0;?) f(P)?A??,
则称f在D上当P?P0时,以A为极限,记limf(P)?A.
P?P0P?D上述极限又称为二重极限.
2.二元函数极限的求法
2.1 利用二元函数的连续性
命题 若函数f(x,y)在点(x0,y0)处连续,则
limf(x,y)?f(x0,y0).
(x,y)?(x0,y0)2 例1 求f(x,y)?x?2xy 在点(1,2)的极限. 2 解: 因为f(x,y)?x?2xy在点(1,2)处连续,所以
limf(x,y)x?1y?2?lim(x2?2xy)x?1y?2?12?2?1?2?5.
例2 求极限lim1.
?x,y???1,1?2x2?y2 解: 因函数在?1,1?点的邻域内连续,故可直接代入求极限,即
11=.
?x,y???1,1?2x2?y23lim1 / 15
2.2 利用恒等变形法
将二元函数进行恒等变形,例如分母或分子有理化等. 例3
第4章_二元关系和函数
第四章 二元关系 和函数1 2 3 4 5 6 7笛卡尔积与二元关系 关系的运算
关系的性质 关系的闭包 等价关系和偏序关系 函数的定义和性质 函数的复合和反函数
二元关系和函数1DEFINITION 1.
笛卡尔积与二元关系
设n为一正整数,由n个元素x1,x2,…,xn按 一定顺序排列成的一个序列<x1,x2,…,xn>称 为有序n元组。(The ordered n-tuple <x1,x2,…,xn> is the ordered collection that has x1 as its first element, x2 as its second element, … , and xn as its nth element.)2
笛卡尔积与二元关系DEFINITION 2.
设A,B为集合,用A中元素为第一元素,B 中元素为第二元素,构成有序对,所有这样 的有序对组成的集合叫做A和B的笛卡尔积, 记做A×B. (Let A and B be sets. The Cartesian product of A and B, denoted by A×B, is the set of all ordere
第4章_二元关系和函数
第四章 二元关系 和函数1 2 3 4 5 6 7笛卡尔积与二元关系 关系的运算
关系的性质 关系的闭包 等价关系和偏序关系 函数的定义和性质 函数的复合和反函数
二元关系和函数1DEFINITION 1.
笛卡尔积与二元关系
设n为一正整数,由n个元素x1,x2,…,xn按 一定顺序排列成的一个序列<x1,x2,…,xn>称 为有序n元组。(The ordered n-tuple <x1,x2,…,xn> is the ordered collection that has x1 as its first element, x2 as its second element, … , and xn as its nth element.)2
笛卡尔积与二元关系DEFINITION 2.
设A,B为集合,用A中元素为第一元素,B 中元素为第二元素,构成有序对,所有这样 的有序对组成的集合叫做A和B的笛卡尔积, 记做A×B. (Let A and B be sets. The Cartesian product of A and B, denoted by A×B, is the set of all ordere
数列函数极限和函数连续性
数列、函数极限和函数连续性
数列极限
定义1(??N语言):设?an?是个数列,a是一个常数,若???0,?正整数N,使得当n?N时,都有an?a??,则称a是数列?an?当n无限增大时的极限,或称?an?收敛于a,记作liman?a,或an?a?n????.这时,也称?an?的极限
n???存在.
定义2(A?N语言):若A?0,?正整数N,使得当n?N时,都有an?A,则称
??是数列?an?当n无限增大时的非正常极限,或称?an?发散于??,记作
liman???n???或an????n????,这时,称?an?有非正常极限,对于??,?的定
义类似,就不作介绍了.为了后面数列极限的解法做铺垫,我们先介绍一些常用定理.
1.2 数列极限求法的常用定理
定理1.2.1(数列极限的四则运算法则) 若?an?和?bn?为收敛数列,则
?an?bn?,?an?bn?,?an?bn?也都是收敛数列,且有
lim?an?bn??liman?limbn, lima?b?lima?limb.?nn?nnn??n??n??n??n??n??
?an?若再假设bn?0及limbn?0,则??也是收敛数列,且有
二元关系
平顶山学院毕业论文(设计)
引言
在日常生活中,关系一词是大家在生活学习和工作中经常遇到和处理的概念,我们都熟知关系一词的含义,例如兄弟关系、上下级关系、位置关系等.在数学中关系可抽象为表达集合中元素之间的关系,如“4大于2”,“P在点a,b之间”.
在离散数学中关系是刻画元素之间相互联系的一个重要的概念,广泛应用于计算机科学技术如计算机程序的输入、输出关系,数据库的数据特性关系,其中关系数据库就是以关系及其运算作为理论基础的.近世代数利用等价关系将代数系统进行分类,进而加以研究.关系也是点集拓扑中一个重要概念,通过关系分类来研究集合元素之间的某种联系.熟练掌握关系的定义和性质,也是学好近世代数和点集拓扑的基础.
最基本的关系就是二元关系,就是集合中两个元素之间的某种相关性.例如
B可以从事?,有三个人A,B,C和四项工作?,?,?,?.已知A可以从事?和?,
C可以从事?和?,那么人和工作之间的对应关系可以记作:
R???A,??,?A,??,?B,??,?C,??,?C,???.
这是人的集合?A,B,C?到工作的集合??,?,?,??之间的二元关系.
一 基础知识
定义1?? 设A,B为集合,用A中元素为第一元素,B中元素为第二元素,
用MATLAB绘制一元函数和二元函数的图象
《MATLAB语言》课程论文
用MATLAB绘制一元函数和二元函数的
图象
姓名: 马军
学号: 12010245245 专业: 通信工程 班级: 2010级通信1班 指导老师:汤全武
学院: 物理电气信息学院
完成日期:2011.12.20
用MATLAB绘制一元函数和二元函数的图像
(马军 12010245245 2010级通信工程1班)
【摘要】大学物理力学中涉及许多复杂的数值计算问题,例如非线性问题,对其手工求解较为复杂,而MATLAB语言正是处理非线性问题的很好工具,既能进行数值求解,又能绘制有关曲线,非常方便实用。另外,利用其可减少工作量,节约时间,加深理解,同样可以培养应用能力。 【关键词】一元函数 二元函数 MATLAB 图像的绘制
一、问题的提出
MATLAB语言是当今国际上科学界(尤其是自
用MATLAB绘制一元函数和二元函数的图象
《MATLAB语言》课程论文
用MATLAB绘制一元函数和二元函数的
图象
姓名: 马军
学号: 12010245245 专业: 通信工程 班级: 2010级通信1班 指导老师:汤全武
学院: 物理电气信息学院
完成日期:2011.12.20
用MATLAB绘制一元函数和二元函数的图像
(马军 12010245245 2010级通信工程1班)
【摘要】大学物理力学中涉及许多复杂的数值计算问题,例如非线性问题,对其手工求解较为复杂,而MATLAB语言正是处理非线性问题的很好工具,既能进行数值求解,又能绘制有关曲线,非常方便实用。另外,利用其可减少工作量,节约时间,加深理解,同样可以培养应用能力。 【关键词】一元函数 二元函数 MATLAB 图像的绘制
一、问题的提出
MATLAB语言是当今国际上科学界(尤其是自
研究二元函数(多元函数)的思想方法
研究二元函数(多元函数)的思想方法
一、研究二元函数(多元函数)的思想方法,总的说来有两种:一种称为多重法,用这种方法研究二元函数就是使两个自变量同时变化,一般来说,凡涉及多元函数的一些重要概念和理论多采用多重法,例如多元函数的极限、连续、可微、极值等概念就是如此;另一种是暂时令其中某一个自变量变化,其余的自变量都视为常数,即将二元函数(多元函数)化为一元函数来研究,这种方法称为转化法或单一法。一般来说,凡计算二元函数的某些量多采用此法,例如二元函数的累次极限、偏导数等。
二、二元函数是一元函数的推广,所以必然保留一些与一元函数类似的性质,如一元函数的极限、连续的运算性质可以类比的推广到二元函数,在学习中大家要注意这种类比的方法。 我们既要领会二元函数与一元函数的共性,更要注意它们的差别:例如, z
x就是一个
整体记号,而不是 z与 x的商,可导(偏导数存在)不一定连续,可微与可导不等价等等,这些差别需要我们尤其注意。
一元函数与多元函数的不同从方法论上可以这样理解:一元函数中的重要性质或理论,如果在多元函数中涉及到且以多重法给出,那么这种性质或理论就仍可保持;反之,如果在多元函数中涉及的概念既有用多重法又有用单一法给出,则这种性质或理论就不再保持
最全大学高等数学函数、极限和连续
第一章 函数、极限和连续
§1.1 函数
一、 主要内容 ㈠ 函数的概念
1. 函数的定义: y=f(x), x∈D
定义域: D(f), 值域: Z(f).
y??f(x)x?D2.分段函数:
?1?g(x)x?D2
3.隐函数: F(x,y)= 0
4.反函数: y=f(x) → x=φ(y)=f-1
(y)
y=f-1
(x)
定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:
y=f-1(x), D(f-1)=Y, Z(f-1
)=X
且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性
1.函数的单调性: y=f(x),x∈D,x1、x2∈D 当x1<x2时,若f(x1)≤f(x2),
则称f(x)在D内单调增加( );
若f(x1)≥f(x2),
则称f(x)在D内单调减少( );
若f(x1)<f(x2),
则称f(x)在D内严格单调增加( );
若f(x1)>f(x2),
则称f(x)在D内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f