高中数学导数20种题详细讲解

“高中数学导数20种题详细讲解”相关的资料有哪些?“高中数学导数20种题详细讲解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学导数20种题详细讲解”相关范文大全或资料大全,欢迎大家分享。

新高中数学导数及其应用

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

欢迎阅读

高中数学导数及其应用

一、知识网络 二、高考考点

1、导数定义的认知与应用;

2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可

负),则函数y相应地有增量,这两个增量的比

,叫做函数在点到这间的平均变化率。如果

欢迎阅读

时,有极限,则说函数在点处可导,并把这个极限叫做在点处

的导数(或变化率),记作,即。

(Ⅱ)如果函数导,此时,对于开区间(在开区间(在开区间()内每一点都可导,则说在开区间()内可,这样)内的导)内每一个确定的值,都对应着一个确定的导数在开区间()内构成一个新的函数,我们把这个新函数叫做函数(简称导数),记作或,即。 认知: (Ⅰ)函数是一个数值; 的导数在点是以x为自变量的函数,而函数是的导函数当在点处的导数时的函数值。 处的导数 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量 ; ②求平

高中数学导数练习题

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

考点一:求导公式。 例1. f (x)是f(x)

13

x 2x 1的导函数,则f ( 1)的值是。 3

1

x 2,则2

考点二:导数的几何意义。

,f(1))处的切线方程是y 例2. 已知函数y f(x)的图象在点M(1f(1) f (1) 。

, 3)处的切线方程是。 例3.曲线y x3 2x2 4x 2在点(1

考点三:导数的几何意义的应用。

例4.已知曲线C:y x3 3x2 2x,直线l:y kx,且直线l与曲线C相切于点

x0,y0 x0 0,求直线l的方程及切点坐标。

考点四:函数的单调性。

例5.已知f x ax3 3x2 x 1在R上是减函数,求a的取值范围。

考点五:函数的极值。

例6. 设函数f(x) 2x3 3ax2 3bx 8c在x 1及x 2时取得极值。 (1)求a、b的值;

3],都有f(x) c成立,求c的取值范围。 (2)若对于任意的x [0,

考点六:函数的最值。

例7. 已知a为实数,f x x 4 x a 。求导数f' x ;(2)若f' 1 0,求f x

2

2

在区间 2,2 上的最大值和最小值。

考点七:导数的综合性问题。

3

例8. 设函数f(x) ax bx c(a 0)为奇函数,其图象在点(1,f(1))处的切线与直线

高中数学导数练习题

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

专题8:导数(文)

经典例题剖析 考点一:求导公式。 例1. f?(x)是f(x)?13x?2x?1的导函数,则f?(?1)的值是 。 32 解析:f'?x??x?2,所以f'??1??1?2?3 答案:3

考点二:导数的几何意义。

例2. 已知函数y?f(x)的图象在点M(1处的切线方程是y?,f(1))1x?2,则2f(1)?f?(1)? 。

解析:因为k?11,所以f'?1??,由切线过点M(1,f(1)),可得点M的纵坐标为2255,所以f?1??,所以f?1??f'?1??3 22答案:3

例3.曲线y?x?2x?4x?2在点(1,?3)处的切线方程是 。

解析:y'?3x?4x?4,?点(1,?3)处切线的斜率为k?3?4?4??5,所以设切

232,?3)带入切线方程可得b?2,,?3)线方程为y??5x?b,将点(1所以,过曲线上点(1处的切线方程为:5x?y?2?0 答案:5x?y?2?0

点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。

例4.已知曲线C:y?x?3x?2x,直线l:y?kx,且直线l与曲线C相切于

高中数学导数练习题

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

考点一:求导公式。 例1. f (x)是f(x)

13

x 2x 1的导函数,则f ( 1)的值是。 3

1

x 2,则2

考点二:导数的几何意义。

,f(1))处的切线方程是y 例2. 已知函数y f(x)的图象在点M(1f(1) f (1) 。

, 3)处的切线方程是。 例3.曲线y x3 2x2 4x 2在点(1

考点三:导数的几何意义的应用。

例4.已知曲线C:y x3 3x2 2x,直线l:y kx,且直线l与曲线C相切于点

x0,y0 x0 0,求直线l的方程及切点坐标。

考点四:函数的单调性。

例5.已知f x ax3 3x2 x 1在R上是减函数,求a的取值范围。

考点五:函数的极值。

例6. 设函数f(x) 2x3 3ax2 3bx 8c在x 1及x 2时取得极值。 (1)求a、b的值;

3],都有f(x) c成立,求c的取值范围。 (2)若对于任意的x [0,

考点六:函数的最值。

例7. 已知a为实数,f x x 4 x a 。求导数f' x ;(2)若f' 1 0,求f x

2

2

在区间 2,2 上的最大值和最小值。

考点七:导数的综合性问题。

3

例8. 设函数f(x) ax bx c(a 0)为奇函数,其图象在点(1,f(1))处的切线与直线

高中数学竞赛讲座20讲

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

竞赛讲座01-奇数和偶数

整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示 ,奇数可用2k+1表示,这里k是整数. 关于奇数和偶数,有下面的性质:

(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;

(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)若a、b为整数,则a+b与a-b有相同的奇数偶;

(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数. 以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜. 1.代数式中的奇偶问题

例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

□+□=□, □-□=□,

□3□=□ □÷□=□.

解 因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.

例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组

是整数,那么

(A)p、q都是偶数. (B)p、q

高中数学竞赛讲座20讲

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

竞赛讲座01-奇数和偶数

整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示 ,奇数可用2k+1表示,这里k是整数. 关于奇数和偶数,有下面的性质:

(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;

(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)若a、b为整数,则a+b与a-b有相同的奇数偶;

(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数. 以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜. 1.代数式中的奇偶问题

例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

□+□=□, □-□=□,

□3□=□ □÷□=□.

解 因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.

例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组

是整数,那么

(A)p、q都是偶数. (B)p、q

高中数学选修2-2《导数及其应用》检测题

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

1高中数学选修2-2《导数及其应用》检测题

一、 选择题(每题5分,共60分)

1.定积分

1?0x2dx的结果是 ( )

A.1

1 B.3

1 C.2 1 D.6

?y等于( ) ?x2.已知函数f(x)?2x?1的图象上一点(1,1)及邻近一点(1+△x,1+△y),则A.4 B.4x C.4?2?x D.4?2?x 3. 已知函数y?f(x)在x?x0处可导,则limh?022f(x0?h)?f(x0?h)等于 ( )

h

A.f/(x0) B.2f/(x0) C.-2f/(x0) D.04. 函数y?2x3?3x?cosx,则导数y/=( ) A.6x?x2?231?32?sinx B.2x?x?sinx

32221?1?2C.6x?x3?sinx D.6x?x3?sinx

3325.方程2x3?6x2?7?0在区间(0,2)内根的个数为

y ( )

A.0 B.1 C.2 D.3 6.函数f(x)的定义域为开区

高中数学压轴题系列 - 导数专题 - 双变量问题(2)

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

高中数学压轴题系列——导数专题——双变量问题(2)

1.(2010?辽宁)已知函数f(x)=(a+1)lnx+ax2+1 (1)讨论函数f(x)的单调性;

(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围. 解:(Ⅰ)f(x)的定义域为(0,+∞).

当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调递增; 当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调递减; 当﹣1<a<0时,令f′(x)=0,解得.

则当时,f'(x)>0;

时,f'(x)<0. 故f(x)在

单调递增,在

单调递减.

(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调递减, 从而?x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2| 等价于?x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1① 令g(x)=f(x)+4x,则

①等价于g(x)在(0,+∞)单调递减,即.

从而

故a的取值范围为(﹣∞,﹣2].(12分)

2.(2018?呼和浩特一模)已知函数f(x)=lnx,g(x)=

﹣bx(b为常数).

(Ⅰ)当b=4时,讨论函数h(x)=f

高中数学竞赛讲座20讲

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

竞赛讲座01-奇数和偶数

整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示 ,奇数可用2k+1表示,这里k是整数. 关于奇数和偶数,有下面的性质:

(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;

(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)若a、b为整数,则a+b与a-b有相同的奇数偶;

(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数. 以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜. 1.代数式中的奇偶问题

例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

□+□=□, □-□=□,

□3□=□ □÷□=□.

解 因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.

例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组

是整数,那么

(A)p、q都是偶数. (B)p、q

高中数学高考综合复习导数及其应用

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

高中数学高考综合复习导数及其应用

导数及其应用

一、知识网络

二、高考考点

1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义;

4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数

在点

及其附近有定义,当自变量x在

处有增量△x(△x可正可负),则函

数y相应地有增量 ,这两个增量的比 ,叫做函数

在点 到 这间的平均变化率。如果 时, 有极限,则说函数 在点 处可导,

并把这个极限叫做 在点 处的导数(或变化率),记作

,即

高中数学高考综合复习导数及其应用

(Ⅱ)如果函数对于开区间(

在开区间(

)内每一点都可导,则说 ,都对应着一个确定的导数

在开区间(

在开区间(

)内可导,此时,

)内构 或

)内每一个确定的值 ,这样在开区间(

成一个新的函数,我们把这个新函数叫做 )内的导函数(简称导数),记作

认知: (Ⅰ)函数数值;

(Ⅱ)求函数 ①求函数的增量

在点

在点

的导数 处的导数

是以x为自变量的函数,而函数 是

的导函数

在点 处的导数 是一个

时的函数值。

处的导数的三部曲:

②求平均