二次函数定区间动轴分类讨论

“二次函数定区间动轴分类讨论”相关的资料有哪些?“二次函数定区间动轴分类讨论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数定区间动轴分类讨论”相关范文大全或资料大全,欢迎大家分享。

(精)二次函数动轴与动区间问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第1页(共5页) 二次函数在闭区间上的最值

一、 知识要点:

二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.

设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--?? ???b a

ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:

(1)当[]

-∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-

?b a m n 2,时 若-

m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[]

m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

二、例题分析归类:

(一)、正向型

是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形

(精)二次函数动轴与动区间问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第1页(共5页) 二次函数在闭区间上的最值

一、 知识要点:

二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.

设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--?? ???b a

ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:

(1)当[]

-∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-

?b a m n 2,时 若-

m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[]

m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。

二、例题分析归类:

(一)、正向型

是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形

含参数二次函数分类讨论的方法hai

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

二次函数求最值参数分类讨论的方法

分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题.

一般地,对于二次函数y=a(x?m)2+n,x∈[t,s]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。

t+s 2ts ② ① ③ ④ ①表示对称轴在区间[t,s]的左侧,②表示对称轴在区间[t,s]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t,s]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。

含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论

题型一:“动轴定区间”型的二次函数最值 例1、求函数f(x)?x2?2ax?3在x?[0,4]上的最值。

分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。

解:f(x)?x?2ax?3?(x?a)?3?a

∴此函数图像开口向上,对称轴x=a

①、当a<0时,0

闭区间上二次函数的最值

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

闭区间上二次函数的最值

朱义华

二次函数是最简单的非线性函数之一,自身性质活跃,同时经常作为其他函数的载体。二次函数在某一区间上的最值问题,是初中二次函数内容的继续和发展,随着区间的确定或变化,以及在系数中增添参变数,使其又成为高考数学中的热点。

一. 定二次函数在定区间上的最值

二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y??x2?4x?2在区间[0,3]上的最大值是_________,最小值是_______。 解:函数y??x2?4x?2??(x?2)2?2是定义在区间[0,3]上的二次函数,其对称轴方程是x?2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。函数的最大值为f(2)?2,最小值为f(0)??2。

图1

2例2. 已知2x?3x,求函数f(x)?x?x?1的最值。 2解:由已知2x?3x,可得0?x?233??,即函数f(x)是定义在区间?0,?上的二22??211?3?次函数。将二次函数配方得f(x)??x???,其对称轴方程x??,顶点坐标

?22?43??13????,?,且图象开口向上。显然其顶点横坐标不在区间?0,

二次函数动点问题(含答案)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

二次函数的动态问题(动点)

1.如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形

MDNA的面积为S.若点A,点D同时以每秒1个单位

的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;

(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

[解] (1)点A(?40,),点B(?20,),点E(08,)关于原点的对称点分别为D(4,0),C(2,0),

F(0,?8).

设抛物线C2的解析式是

y?ax2?bx?c(a?0),

?16a?4b?c?0,?则?4a?2b?c?0, ?c??8.?,?a??1?解得?b?6,

?c??8.?所以所求抛物线的解析式是y??x?6x?8.

二次函数顶点对称轴,解析式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

《二次函数的图象》教案

一、教学目标

(一)知识目标

2y ax bx c的图象; 1.使学生会用描点法画出二次函数

2.使学生会用配方法确定抛物线的顶点和对称轴(对于不升学的学生,只要求会用公式确定抛物线的顶点和对称轴);

3.使学生进一步理解二次函数与抛物线的有关概念;

4.使学生会用待定系数法由已知图像上三点的坐标求二次函数的解析式.

(二)能力目标

1.培养学生分析问题、解决问题的能力;

2.向学生进行配方法和待定系数法的渗透,使学生能初步掌握;

(三)情感目标

1.向学生进行事物间是互相联系及互相转化的辩证唯物主义观点教育.

2.通过二次函数的进一步研究,让学生认识到二次函数的对称轴、顶点坐标与二次项系数、一次项系数及常数项之间的内在联系的数学美及和谐的数学美.

二、教学方法

教师采用比较法、观察法、归纳总结法

本节重点是求二次函数解析式及将二次函数的解析式配方,确定抛物线的顶点、对称轴等特征,进而画出这条抛物线,在学习中,学生不要死记硬背,要运用数形结合思想,熟练画出抛物线草图,结合图像研究函数的性质以及不同图像之间的相互关系.

三、重点·难点·疑点及解决办法

1.教学重点:用配方法确定抛物线的顶点坐标求对称轴及用待定系数法由已知图像上2y

区间上的二次函数、二次方程和二次不等式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

学术论坛

SC畦NCE&TECHNOLOGY

区间上的二次函数~●-次方程和=次不等式

高立群邵亚茹

(陕西省富平县立诚中学

71171

1)

摘要:本文着重讨论在指定区间内二次函数的最值问题,二次方程根的分布问题,二次不等式的判解问题的一些结论及其应用。关键词:区间二次函数二次方程二次不等式中图分类号:G633.62文献标识码:A文章编号:1672—379l(2007)12(a)一0207—02二次函数是重要的初等函数之一,很多问题都转化为二次函数来处理,二次函数、一元二次方程、二次不等式,它们之间相互联系,互为工具,而在指定区间内研究其局部性质是三者深化的主要内容,并且随着各类考试、竞赛的深入不断深化。

例2:设f(x)是定义在区间(一*,十*)上的以2为周期的函数,对k∈z用Ik表示区间(2k一1,2k+1),已知x∈I.时,f(x)=x2。

I、求f(x)在Ik上的解析式Ⅱ、对自然数k求集合Mk={o【}使方程f(x)=ax在Ik上有两个不相等的实数根}

解:

髂m忙:墨学

f(x)>O在【m,n]上有解C>f(m)>O或f

(n)>0

1二次函数f(x)=ax‘+bx+c(a≠O)在【m,nJ内的最值。a>0时

例3:1999年高中联赛一试(三)

题目:已知当x∈

二次函数与圆综合动点问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

二次函数与圆综合动 点问题 1.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD. (1)求b的值和点D的坐标;

(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;

y

y=x+b

D M 4 C

3 2 1

A B

x ?1 O 1

2.如图,射线OA⊥射线OB,半径r=2cm的动圆M与OB相切于点Q(圆M与OA?没有公共点),P是OA上的动点,且PM=3cm,设OP=xcm,OQ=ycm. (1)求x、y所满足的关系式,并写出x的取值范围. (2)当△MOP为等腰三角形时,求相应的x的值. B

M Q

O P A

3.如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积;

(3)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=k,△CP

二次函数综合题分类练习

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

专题四 二次函数之面积、周长最值问题

1、如图,抛物线y=?12x?bx?c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3. 2(1)求抛物线的解析式.

(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.

2、如图,已知抛物线y=-x+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式;

(2)设点M在对称轴上一点,求使MN+MD的值最小时的M的坐标;

(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

第 1 页 共 8 页

2

2

3、(2013?自贡)如图,已知抛物线y=ax+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.

(1)求抛物线的解析式;

(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

4、(2014?德州,第24题12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并

二次函数压轴题分类精选 - 相似

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D. (1)求m、n的值及该抛物线的解析式;

(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;

(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.

【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,确定出A与B坐标,代入二次函数解析式求出b与c的值即可;

(2)由等腰直角△APM和等腰直角△DPN,得到∠MPN为直角,由两直角边乘积的一半表示出三角形MPN面积,利用二次函数性质确定出三角形面积最大时P的坐标即可;

(3)存在,分两种情况,根据相似得比例,求出AQ的长,利用两点间的距离公式求出Q坐标即可.

【解答】解:(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3, ∴A(1,0),B(4,3), ∵y=﹣x2+bx+c