定积分的应用求旋转体积
“定积分的应用求旋转体积”相关的资料有哪些?“定积分的应用求旋转体积”相关的范文有哪些?怎么写?下面是小编为您精心整理的“定积分的应用求旋转体积”相关范文大全或资料大全,欢迎大家分享。
多面体与旋转体复习题66
66.体积计算及其应用(2)
一、典型例题
1. 四面体ABCD中,M、P、N、Q分别是其两组对棱的中点,求截面MNPQ分四面体ABCD
所成两部分体积的比。[1∶1]
2. 在正四棱台中,侧棱AA1=3,下底边AB=5,侧面对角线A1B=4,求A1到底面的距离
及三棱锥A1-ABD的体积。[
357、7] 52x2y23. 已知双曲线2?2?1,用直线y=h(h>0)截y轴、这双曲线及其渐近线,交点为B、C、
abD,由x轴、直线y=h,双曲线及其渐近线在第一象限内围成平面图形OACD,将这平面
图形绕y轴旋转一周生成的旋转体,试完成下列填空,求出这旋转体的体积V。
①双曲线一段弧AC的方程是 ,渐近线上线段OD的方程是 ;[x=
ay 0≤y≤h] ba2at?b2、t] bb②设M是OB上任意一点,且OM=t(0≤t≤h),过M作y轴的垂线交双曲线弧AC于N,交OD于P,则|MN|= ,|MP|= 。[
③线段PN绕y轴旋转一周所截得圆环的面积为 。[?a2]
④根据祖暅原理,找出一个与旋转体体积相等的,而且能求出其体积的几何体,从而得V
2
= 。[?ah]
4. 降水量是指水平地面
定积分的应用
洛阳师范学院 数学科学学院 《数学分析》教案
第十章 定积分的应用
在上一章引入定积分概念时,曾把曲边梯形的面积、变速直线运动的路程表示为积分和的极限,即要用定积分来加以度量。事实上,在科学技术中采用“分割、作和、取极限”的方法去度量实际量得到了广泛的应用。本章意在建立度量实际量的积分表达式的一种常用方法——微元法,然后用微元法去阐述定积分在某些几何、物理问题中的应用。
§1平面图形的面积
教学目标:掌握平面图形面积的计算公式. 教学内容:平面图形面积的计算公式.
(1) 基本要求:掌握平面图形面积的计算公式,包括参量方程及极坐标方程所定义的平面图形面积的计算公式.
(2) 较高要求:提出微元法的要领. 教学建议:
(1) 本节的重点是平面图形面积的计算公式,要求学生必须熟记并在应用中熟练掌握.
(2) 领会微元法的要领. 教学过程:
1、微元法
bI?众所周知,定积分
?f?x?dxa是由积分区间
?a,b?及被积函数f(x)所决定
的,而定积分对积分区间具有可加性,即如果把积分区间作为任意划分
?:x0?a?x1?x2???xn?1?xn?b
记
?Ik??xkxk?1f(x)dx k?1,2
积分求圆球面积和体积
积分法求圆球的表面积与体积 方法一:
如图圆O 的方程为222R y x =+, 22x R y -=
将圆O 绕X 轴旋转一周,得到一个圆球体
从X 负半轴到X 正半轴将直径2R 等分n 份)
(∞→n 每份长为x ?
球体也同时被垂直分成n 份薄片
每片的半径为22x R r -=
每片分得弧长为l d
如图:当无限等分后
(1)CE d l ≈弧 (2)CE OC ⊥ (3)x EH ?=
易证CEH OCX ?∝? CX OC EH CE =?CX
EH OC CE ?= x x R R
l ?-=??22弧 薄片的球面面积x x R R
x R l r S ?--=?=?22222)2(ππ
x R S ?=?π2
球面面积??+-+-==R
R R R Rx Rdx ππ22=2
4R π 方法二:
如图圆O 的方程为222R y x =+, 22x R y -=
将圆O 绕X 轴旋转一周,得到一个圆球体
沿X 轴正方向到X 轴负方向将圆心角等分n 份
)(∞→n 每份为θ?,),0(πθ∈
球体也同时被垂直分割成n 份薄片
每片弧长相等对应圆心角为θ?
每片对应的半径为θsin R r =
当0→?θ时
(1)θ?=∠BOC (2)CB CB 弧弦≈ (3)CB OB
广义积分、定积分应用
第四节 广义积分
在一些实际问题中,我们常遇到积分区间为无穷区间或被积函数为无界函数的积分,它们已经不属于前面所说的定积分,因此,我们需要对定积分作两种推广,从而形成了广义积分的概念. 一. 无穷区间上的广义积分
1.引例1.求下述广义曲边梯形的面积.
(1)由曲线y?e?x,及x轴、y轴所围成的图形的面积(作图) 解:A?limb????b0?x?b??1 edx?lim?1?e?b????(2)由曲线y?ex,及x轴、y轴所围成的图形的面积(作图) 解:A?lima????0axa??1. edx?lim?1?e?a????2.定义1.设函数f?x?在区间?a,???上连续,取b?a.如果极限 lim存在,则称此极限为函数f?x?在区间?a,???上的广义积分,记作?即:???a??b????f?x?dxab
af?x?dx.
f?x?dx?lim??b????f?x?dxab ————(1)
这时,也称广义积分?惯上称为广义积分???aaf?x?dx收敛;如果上述极限不存在,函数f?x?在区间?a,???上的广义积分就没有意义,习
f?x?dx发散.
定义2.设函数f?x?在区间???,b?上连续,取a
定积分的应用论文
学号:
本科毕业论文
学 院 专 业 年 级 姓 名 论文题目 定积分的若干应用 指导教师 薛艳昉 职称 讲师
2013年5月16日
目 录
摘 要 ····························································································· 1 关键词 ····························································································· 1 Abstract ···········································································
六年级奥数上册旋转体和立体图形的计算
- . -
- . .考试资料
奥数专题(通用版)六上
七、旋转体和立体图形的计算 参考答案
1. 一根圆柱体钢材,沿底面直径割开成两个相等
的半圆柱体,已知一个剖面的面积是960平方厘米,半圆柱的体积是3014.4立方厘米,求原来钢
材的体积是_____立方里面,侧面积是______平
方厘米。
①.6028.8;②.3014.4. 2.
100.48 3. 一个圆柱体的表面积是150.72平方厘米,底面半径是2厘米,它的体积是_____立方厘米。
125.6 4. 一个圆柱体的底面平均分成若干个扇形,然后切开拼成一个近似的等底等高长方体,表面积比原来增加400平方厘米,已知圆柱的高是20厘米,圆柱的体积是_____。
6280 5.
25 6. 在一个底面直径是40厘米的圆柱形盛水缸里,有一个直径是10厘米的圆锥形铸件完全浸入
24
- . -
-
定积分及其应用
第5章 定积分及其应用
本章讨论积分学的第二个问题——定积分.定积分是某种特殊和式的极限,它是从大量的实际问题中抽象出来的,在自然科学与工程技术中有着广泛的应用.
本章主要讲授定积分的定义、性质,积分上限函数及其导数,牛顿-莱布尼兹公式,定积分的换元法和分部积分法,广义积分,以及定积分在几何、物理、经济上的应用等.
通过本章的学习,学生能够理解定积分的概念及其几何意义,了解函数可积的条件;掌握定积分的基本性质和对积分上限函数求导数的方法;能利用牛顿-莱布尼兹公式和定积分的换元法、分部积分法计算定积分;了解广义积分收敛和发散的概念,会求广义积分;会用定积分求平面图形的面积和简单的旋转体的体积,会用定积分解决沿直线运动时变力所做的功等实际问题.
5.1 定积分的概念与性质
5.1.1 引例
1.曲边梯形的面积
设函数f(x)在区间[a,b]上连续,且f(x)?0.由曲线y?f(x),直线x?a,x?b以及x轴所围成的平面图形称为曲边梯形(如图5-1所示),下面讨论如何求该曲边梯形的面
积.
不难看出,该曲边梯形的面积取决于区间[a,b]及曲边y?f(x).如果y?f(x)在[a,b]上为常数,此时曲边梯形为矩形,则其面积等于h(b?a).现在
matlab求定积分之实例说明
一、符号积分
符号积分由函数int来实现。该函数的一般调用格式为:
int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;
int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;
int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。
例:
求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:
>>syms x y z %定义符号变量
>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式
F2 =
1610027357/65
概述定积分的发展及应用
2012届毕业论文设计
论文题目: 概述定积分的发展与应用 专 业: 数学与应用数学 学 院: 数学与统计学院 指导教师: 刘 坤 班 级: 08级本科(1)班 姓 名: 李 勇 学 号: 2008011115 联系电话: 15101901171
概述定积分的发展与应用
李 勇,刘坤
(陇东学院数学与统计学院, 甘肃 庆阳 745000)
摘 要: 概述了定积分发展的三个历史阶段,讨论了定积分在各个学科中的具体应用. 关键词: 分割近似; 定积分; 流数法; 应用
微积分创立是数学史上一个具有划时代意义的创举,也是人类文明的一个伟大成果.正
如恩格斯评价的那样:\在一切理论成就中,未必再有什么象17世纪下半叶微积分的发明那样被当作人类精神的最高胜利了.\它是科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具; 如数学研究, 求数列极
定积分的应用练习题
题型
1. 由已知条件,根据定积分的方法、性质、定义,求面积 2. 由已知条件,根据定积分的方法、性质、定义,求体积
内容
一.微元法及其应用 二.平面图形的面积
1.直角坐标系下图形的面积
2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积
1.已知平行截面的立体体积 2.旋转体的体积
四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用
1.定积分在经济上的应用 2.定积分在物理上的应用
题型
题型I微元法的应用
题型II求平面图形的面积
题型III求立体的体积
题型IV定积分在经济上的应用 题型V定积分在物理上的应用
自测题六
解答题
4月25日定积分的应用练习题
一.填空题
1. 求由抛物线线y?x2?2x,直线x?1和x轴所围图形的面积为__________ 2.抛物线y2?2x把圆x2?y2?8分成两部分,求这两部分面积之比为__________ 3. 由曲线x?y?4y,x?2y及直线y?4 所围成图形的面积为 4.曲线y?22x?13x相应于区间[1,3]上的一段弧的长度为 35. 双纽线r2?为 . 6.椭圆?3sin2?相应