小学数学奥数鸡兔同笼教案

“小学数学奥数鸡兔同笼教案”相关的资料有哪些?“小学数学奥数鸡兔同笼教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学奥数鸡兔同笼教案”相关范文大全或资料大全,欢迎大家分享。

小升初奥数第19节:鸡兔同笼

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

鸡兔同笼

1, 让孩子了解语言的精密与数学的联系。

教学目的

2, 掌握做题方法。

教学内容

知识点

逻辑趣味:

我们看这样一道题:

在同一个笼子里的,有若干鸡和兔。从笼子上看有30个头,从笼子下数有70只脚。这个笼子里装有鸡、兔各多少只?

这样的问题属于“鸡兔同笼”问题,解决这类问题通常用假设法。我们可以先假设笼子里全部都是鸡,根据鸡、兔的总只数可以算出在假设条件下共有多少只脚,结果一定比已知的问好脚数少,每差2只脚就说明有1只兔,所以,用所差的脚数除以2,就可以求出兔的只数,从而可以求出鸡的只数。也可以先假设全部都是兔,按照前面的方法推算出鸡的只数。

用假设法解答鸡兔同笼问题的基本数量关系式是:

兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数) 鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡脚数)

例题与巩固

题型一:已知头数和、脚数和

例1:本讲开始例举题目。 练习: 1.

有鸡兔共20只,脚44只,鸡兔各几只?

小升初奥数第19节:鸡兔同笼

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

鸡兔同笼

1, 让孩子了解语言的精密与数学的联系。

教学目的

2, 掌握做题方法。

教学内容

知识点

逻辑趣味:

我们看这样一道题:

在同一个笼子里的,有若干鸡和兔。从笼子上看有30个头,从笼子下数有70只脚。这个笼子里装有鸡、兔各多少只?

这样的问题属于“鸡兔同笼”问题,解决这类问题通常用假设法。我们可以先假设笼子里全部都是鸡,根据鸡、兔的总只数可以算出在假设条件下共有多少只脚,结果一定比已知的问好脚数少,每差2只脚就说明有1只兔,所以,用所差的脚数除以2,就可以求出兔的只数,从而可以求出鸡的只数。也可以先假设全部都是兔,按照前面的方法推算出鸡的只数。

用假设法解答鸡兔同笼问题的基本数量关系式是:

兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数) 鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡脚数)

例题与巩固

题型一:已知头数和、脚数和

例1:本讲开始例举题目。 练习: 1.

有鸡兔共20只,脚44只,鸡兔各几只?

鸡兔同笼题

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

1、 医院实验室里一共饲养白兔和黑兔54只,白兔是黑兔只数的2倍,求白兔和黑兔各有

多少只?

2、 甲、乙两数的和是250,甲数是乙数的4倍。求甲、乙两数各是多少?

3、 三兄弟存款600元,已知老大存的钱数是老三的3倍,老二存的钱数是老三的2倍。求

三兄弟各存款多少?

4、 A、B、C三个数的和是1200,其中B是A的3倍C是B的2倍,求这三个数。

5、 师徒两人共生产了380个轮胎,师傅生产的车胎个数比徒弟的2倍还多20个,师徒各

生产多少个?

6、 有一批大米共1800千克,分装在甲、乙、丙三条船上,甲船的千克数是乙船的2倍,

如果丙船装300千克,那么甲、乙两船各装多少千克?

7、 两个数的和是352,其中一个加数的个位是0,若把0去掉,则与另一个加数相同,这

两个数各是多少?

8、 王晶的彩笔比铅笔多12支,已知彩笔的支数是铅笔的3倍,王晶的彩笔和铅笔各是多

少支?

9、 甲的存款是乙的4倍,甲比乙多存600元,求甲、乙俩人各有多少存款?

10、 爸爸今年刚好比张强大29岁,且是张强年龄的3倍多1岁,爸爸和张强今年各是多

少岁?

11、 已知两个数相除的商为4,相减的

小学数学鸡兔同笼教案优秀3篇

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

篇一:鸡兔同笼教学设计 篇一

教学目标:

1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。

教学重点:

明确鸡兔同笼问题数量关系。

教学难点:

初步形成解决此类问题的一般性。

教学过程

一、历史激趣,导入新课(3分)

导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?

这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉”(读成“zhì”),就是野鸡。)谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)

师:古代人对这样的题目有着自己独道的见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题:鸡兔同笼)

小学奥数:6-1-22 鸡兔同笼问题(二).学生版

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

精 品

6-1-9.鸡兔同笼问题(二)

教学目标

1. 熟悉鸡兔同笼的“砍足法”和“假设法”.

2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.

知识精讲

一、鸡兔同笼

这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 二、解鸡兔同笼的基本步骤

解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47?35?12(只).显然,鸡的只数就是35?12?23(只)了.

这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.

假设法顺口溜:鸡兔同笼很奥

《鸡兔同笼》教学反思

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

《鸡兔同笼》教学反思

一年一度的校本教研——“两课两反思”活动如期而至,有幸代表六年级数学组参与其中。这次活动的主题为“数学思考”,根据这一主题,会同本组老师意见和自身条件,结合学生实际认知水平,我选择了执教人教版数学六年级上册数学广角的一节内容——鸡兔同笼。

这一题材,在不同版本的教材其编排不尽相同。如:北师版教材借助“鸡兔同笼”这一载体让学生经历列表——尝试——再调整的过程,体会解决问题的一般策略——列举,旨在通过对一些现象观察、思考,是学生发现一些特殊的规律,获得解决问题的方法;人教版教材则先后呈现了猜测列表法、假设法、列方程、抬腿法等,注重体现不同的解题思路和方法,旨在观察、猜测、实验、推理等活动,培养学生的逻辑思维能力,使学生体会代数方法的一般性;而苏教版呈现的是画图与列表,但更强调画图。

对于“鸡兔同笼”问题,一些学生通过校外的辅导班曾学习过,学生知道如何求解“鸡兔同笼”的方法,但对于为什么是这样却说不明白其中的原因。而这一课题,XX、XXX、XXX、XXX等名师都上过,也有不少经典的教学案例,但其侧重点不同,风格也不一样。面对自己的学生,他们的教学案例不一定适用于我们学生实际。同一个载体———鸡兔同笼

问题,不同的老师

鸡兔同笼讲题定稿

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

鸡兔同笼讲题稿

尊敬的各位评委、老师们:

大家好!我来自浏阳人民路小学,我的讲题是“鸡兔同笼”问题。 我将从下面5个方面进行讲解。 一、 题目背景

笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?

题目来源:人教版六年级上册教材第七单元“数学广角”113页的一个例题。

“孙子算经”中原题是这样的:

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 这个例题在原题的基础上将数据简单化了。 1、 选题目的:

(1)彰显了数学的文化价值,是一道经典趣题,代表了我国渊源流长的数学历史。

(2)蕴含了重要的数学思想方法。

“鸡兔同笼”是数学广角中的一个问题。而“数学广角”在教材中的地位主要是“向学生渗透一些数学思想方法”。 “鸡兔同笼”问题就蕴含着化归、枚举、数形结合、假设、方程、建模等重要的数学思想。

二、题目分析

1、已知条件:8个头,26只脚。

隐藏条件:鸡有2只脚,兔有4只脚 要解决的问题:鸡有多少只?兔有多少只? 三、解题过程。

解决鸡兔同笼问题常用的方法有列表法、假设法、列方程。 学生最初最容易选择的最朴素的做法就是猜测、列表。我让学生理解了题意后,让学生猜一猜,鸡和兔各有几只。学生跃跃欲试。然后

鸡兔同笼分类讲解

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

鸡兔同笼

鸡兔同笼的解法有6种,包括列表法,站队法,捆绑法,假设法,解方程和线段法。其中线段法和解方程都是五年级的知识。站队法、捆绑法和假设法的计算过程其实是一样的,只是需要考虑学生的理解能力。设未知数的解法一般可以倒推回假设法中的综合算式。线段法较直观,能够一眼看出鸡兔的数量差距,需要明确鸡兔脚数如果相等,则兔子数量是鸡数量的2倍,这样的鸡兔总头数会是兔子数量的3倍。

以下主要从假设法和线段法讲解,鸡兔同笼的四种题型“总-总”,“差-差”,“总-差”,“互换”。

(总总)1.总头数,总脚数(晴天、雨天,运费,答题)

|设总头数全鸡或全兔×总头数-总脚数|÷(单只鸡兔脚数差4-2)

鸡兔同笼,鸡兔头数共15只,脚数共44只,问鸡兔各有多少只? ①设全鸡,求兔:(44-2×15)÷(4-2)=7(只) ②设全兔,求鸡:(4×15-44)÷(4-2)=8(只)

共52人,用了11条船,每条大船可载6人,小船可载4人,问大、小船各有几只? ①设全小船,求大船:(52-4×11)÷(6-4)=4(只) ②设全大船,求小船:(6×11-52)÷(6-4)=7(只)

10道题,对一道加10分,错一道扣2分,共得分7

四年级奥数——鸡兔同笼问题

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

第6讲 鸡兔同笼问题与假设法

鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

【例题讲解及思维拓展训练题】

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),

有鸡16-6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。 有鸡(4×16-44)÷(4-2)=10(只),

有兔16

数学广角鸡兔同笼教学设计

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

数学广角《鸡兔同笼》教学设计

绥安中心学校 执教者 黄协艺 指导老师 黄巧玲

【教材分析】

"鸡兔同笼"问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。 “鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。 解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的饿一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。 配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

【教学目标】

1、知识与技能:经历和体验用各种巧妙方法