三角形的重心教学设计
“三角形的重心教学设计”相关的资料有哪些?“三角形的重心教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角形的重心教学设计”相关范文大全或资料大全,欢迎大家分享。
《全等三角形》教学设计
《全等三角形》教学设计
它反映了现 实生活中存在着 大量的全等图形.
图片的收 集与制作
学生分组 讨论、思 考探究
片断 2:一幅漂亮的山水倒影画,一幅 用七巧板拼成的美丽图案. 片断 3:教科书第 90 页的 3 幅图案. 2.学生讨论: (1)从上面的片断中你有什么感受? (2)你能再举出生活中的一些类似例 子吗? 1.收集学生讨论中的图片. 2. 讨论(或介绍)用复写纸、 手撕、 剪纸、 扎针眼等制作类似图形的方法. 1.上面这些图形有什么共同的特征? 2,有人用“全等形”一词描述上面的图 形,你认为这个词是什么含义?
对学生进行操作 技能的培训与指 导. 对学生的
不同回 答,只要合理,就 给予认可.
1.给出“全等形”“全等三角形”的定 、 义. 2.列举反例,强调定义的条件. 3. 提出问题 “你能构造一对全等三角形” 吗?你是如何构造的,与同伴交流. 4.全等三角形的对应元素及性质:教师 结合手中的教具说明(学生运用自制学具理 解)对应元素(顶点、边、角)的含义,并引导 学生观察全等三角形中对应元素的关系,发 现对应边相等, 对应角相等(教师启发学生根 据“重合”来说明道理). 1.学生用半透明的纸描绘教科书 91 页 图 13.1—l 中
相似三角形教学设计
课题名称: 相似三角形的判定(二) 科目:九年级数学 课时安排:一课时 一、教学目标:
知识与技能目标:
1.知道判定两个三角形相似的又一种方法:有两边对应成比例,且夹角相等的两个三角形相似; 2.能运用“有两边对应成比例,且夹角相等的两个三角形相似”判断两个三角形相似。 过程与方法目标:
1、经历探索“有两边对应成比例,且夹角相等的两个三角形相似”的过程,通过观察、实践体验结论的正确性培养学生合情推理的意识。
2、经历应用结论判定三角形相似的过程,通过观察、思考、讨论等方式体验结论的应用,培养学的应用意识和演绎推理的能力。
情感价值与态度观:
1、培养学生大胆猜想、勇于尝试、积极探索、细心求证、归纳总结、学以致用的数学探究意识和数学意志品质 。
2、培养学生合作精神和团队意识. 二、教学重点:相似三角形的判定方法二的运用 三、教学难点:灵活运用判定方法解决相关问题 四、学情分析:
该班学生学习积极性较强,课堂气氛活跃,对数学有较强的兴趣,数学成绩较为理想。 五、教学策略选择与教学设计
多种教学策略的综合运用,以老师引导为主,学生自学,讨论配合,优化教与学。本
部分内容教师尽量引导学生自学,让学生积极思考。在教学中随堂进行学习,
认识三角形(三)教学设计
第五章 三角形
1.认识三角形(三)
沈阳市126中学王明慧 沈阳市第一六0中学 景庆伟
一、学生起点分析
学生的知识技能基础:学生在前面两节课已经认识了三角形及其基本要素:顶点、边、角,知道三角形的定义和三角形三边关系及内角和定理,为进一步探索三角形内角平分线及三角形中线,掌握其定义和性质,奠定了知识技能基础。
学生的活动经验基础:在前面学生已经通过活动探索了三角形三边关系及三角形内角和定理,具备了直观操作的经验,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
三角形是研究平面几何的开端,起到承上启下的作用,三角形的基本知识是最基础的内容。在学习过程中通过观察、操作、想象,推理,交流发展学生的空间观念,积累数学经验,同时通过实验操作与理论相结合的的学习方法可以培养学生合情推理和论证推理相结合的意识。本节课的教学目标如下:
1.经历探索三角形内角平分线及三角形中线的过程,掌握其定义及性质,培养学生简单推理能力。
2.通过折纸和画图等方法认识三角形的中线、角平分线及其性质。
3.通过经历探索过程,认识三角形角平分线及中线定义,同时发展他们的空间观念。
三、
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
7.2.1三角形的外角(教学设计)
7.2.1三角形的内角(教学设计)
教学目标:
知识技能:
1.掌握三角形内角和定理及其推理过程;
2.能应用三角形内角和定理解决一些简单的实际问题. 数学思考:
1.掌握三角形内角和定理,并初步学会利用辅助线证题; 2.培养学生观察、实验和进行简单逻辑推理的能力. 情感态度:
1.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科
学态;
2.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联
系与转化的辩证思想.
教学重点:
三角形内角和定理.
教学难点:
三角形内角和定理的证明.
教学过程:
一、导入新课
我们知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?
二、三角形内角和的证明
把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出
0
∠BCD的度数,可得到∠A+∠B+∠ACB=180。
图1 想一想,还可以怎样拼?
0
①剪下∠A,按图(2)拼在一起,可得到∠A+∠B+∠ACB=180。
图2
0
②把?B和?C剪下按图(3)拼在一起,可得到∠A+∠B+∠
三角形内角和教学设计
目录
第一篇:三角形内角和教学设计 第二篇:三角形内角和教学设计 第三篇:三角形内角和教学设计 第四篇:三角形内角和教学设计 第五篇:三角形内角和教学设计 更多相关范文正文
第一篇:三角形内角和教学设计
三角形的内角和
(卢芳珍)
教学内容 :课本p85例5
教学要求:1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
教学重点 三角形的内角和是180°的规律。
教学难点 使学生理解三角形的内角和是180°这一规律。
教学用具 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、引出课题
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.课件出示:长方形内角和引出直角三角形内角和。
思考:所有的三角形的内角和都是180&d
解三角形单元教学设计
《解三角形》单元教学设计
甘肃省民勤县第四中学 白茂军 13893532527
【数学分析】
解三角形一章是在初中“解直角三角形”和前面的“向量”相关内容基础上构建起来的,定理本身的应用十分广泛。解三角形是三角函数知识和平面向量知识在三角形中的具体运用,是将生产、生活实际问题转化为解三角形计算问题的重要工具,具有广泛的应用价值。解三角形问题和大量需要用解三角形为工具的实际问题的存在,以及数学本身和实际问题都在促使正弦定理,余弦定理的产生。在实际工作中经常遇到很多测量问题,如:在航行途中测出海上两个岛屿之间的距离;测量底部不可到达的建筑物的高度;在水平飞行中的飞机上测量飞机下方山顶的海拔高度;测量海上航行的轮船航速和航向等。本章知识的介绍将很好的解决这些问题,从而提高学生解决实际问题的能力。
【教育分析】
解三角形一章的教育价值主要体现在:
1.正弦、余弦定理的证明,培养了学生实践操作能力,以及提出问题、解决问题等研究性学习的能力,进一步拓展学生的数学活动空间,发展学生“做数学”“用数学”的意识,激发学生的学习兴趣。
2.体现数学与经济、生活等现实世界的联系,培养和发展学生利用解三角形的知识解决身边实际问题的能力。在解三
初中数学三角形(二)特殊三角形
三角形(二)——特殊三角形
【等腰三角形】
1.有两条边相等的三角形是等腰三角形,等腰三角形是轴对称图形。 2.等腰三角形的两个底角相等(简写成“等边对等角”)。
3.等腰三角形顶角的平分线平分底边并且垂直于底边。(常称为“三线合一”)。 4.如果一个三角形有两个内角相等,则它是等腰三角形。
姓 名: 【典型例题】
例1.已知?ABC中,那么?ABC一定是( ) ?B与?C的平分线的交点P恰好在BC边的高AD上, (A)直角三角形 (B)等边三角形 (C)等腰三角形 (D)等腰直角三角形
第12届(2001年)初二培训
例2.如图2,在?ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC和∠ACB,它们相交于F点,是图中等腰三角形的个数是( )
第14届(2003年)初二培训
图2
例3.等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )。
图1
(A)30° (B)30°或150° (C)120°或150° (D)30°或120°或150°
第10届(1999年)初二第
三角形边的关系(教学设计)
三角形边的关系
教学内容
北师大版小学数学四年级下册27——28页
教学目标
知识与技能:
通过摆一摆等操作活动,使学生发现并理解:三角形任意两边之和大于第三边的规律,并能使用规律解决生活中的实际问题。培养归纳、概括水平和推理水平。
过程与方法:
让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的水平,积累探索问题的方法和经验。
情感态度价值观:
通过学生动手操作、猜想、实验、验证及小组讨论等活动,提升学生自主探索和合作交流的水平。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
重点难点:
重点:掌握三角形三边之间的关系。
难点:在探索中发现三角形三边之间的关系。
教具学具:
教具:多媒体课件
学具:实验报告单、小棒若干。
教学设计
一、创设情境导入新课
1、大家都理解了三角形,谁来说说什么是三角形?
(由三条线段围成的封闭图形,叫做三角形。)
2、那么我任意给你三条线段就能围成三角形吗?
生答:一定、不一定
二、自主探索,合作交流
1、提出猜想
我们的猜想是不是准确呢?下面我们就亲自动手摆一摆,有红、蓝两种小棒能摆成吗?老师还为你们准备了4根黄色小棒,(从长到短依次编成1——4号)要求:每次从蓝色的小棒中取出
《三角形的内角和》教学设计
三 角 形 的 内 角 和 ——教 学 设 计
单位:圪垱店乡圪垱店小学 姓名: 郭利娟 电话: 13782841981 时间: 2015年5月
三角形的内角和教学设计
教学内容:
三角形的内角和。人教版《义务教育课程标准实验教科书》数学 四年级下册第85页。
教学目标:
1.使学生经历测量、剪拼、折拼等自主探索活动,知道三角形的内角和是180°。
2.能运用三角形的内角和是180°这一知识来解决简单的实际问题。 3. 使学生在猜想,操作验证,合作交流等具体活动中,提高思维能力,动手操作能力和合作意识,并学会比较各种验证方法的优劣。
教学重点:
让学生探究发现并验证三角形的内角和等于180°。 教学难点:
发展学生的空间观念和推理验证的的思想和能力。 教学准备:
教具:多媒体课件、一个较大的三角形,剪刀,实验报告单。 学具:直角、锐角、钝角三角形各一个,量角器、直尺,剪刀。 教学过程: 一、猜角设疑,揭示课题
师:上课之前我们来做个游戏,这个游戏叫“猜角”。请同学们拿起桌子上量好角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。相信