数列与数表 小学奥数
“数列与数表 小学奥数”相关的资料有哪些?“数列与数表 小学奥数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数列与数表 小学奥数”相关范文大全或资料大全,欢迎大家分享。
四年级高思奥数之数列与数表含答案
第17讲 数列与数表
内容概述
通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题,注意数表形式的多样性,计算时常常考虑周期性,或进行合理估算.
典型问题
兴趣篇
1.1,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3,…,100.请观察上面数列的规律,问:(1)这个数列一共有多少项? (2)这个数列所有数的总和是多少?
2.观察数组(1,2,3),(3,4,5),(5,6,7),(7,8,9)的规律,求:
(1)第20组中三个数的和; (2)前20组中所有数的和.
3.一个数列的第一项是l,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:
(1)第100项是多少? (2)前100项的和是多少?
4. 如图17-1,方格表中的数是按照一定规律填人的.请观察方格表,并填出“?”处的数.
5.如图17-2,数阵中的数是按一定规律排列的,请问:
(1)100在第几行、第几列? (2)第20行第3列的数是多少?
6.如图17-3,从4开始的自然数是按某种规律排列的,请问
小学奥数(认识简单数列)
认识简单数列
知识点梳理
我们把按一定规律排列起来的一列数叫数列.
在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题. 例1 找出下面各数列的规律,并填空. (1)1,2,3,4,5,□,□,8,9,10. (2)1,3,5,7,9,□,□,15,17,19. (3)2,4,6,8,10,□,□,16,18,20. (4)1,4,7,10,□,□,19,22,25. (5) 5,10,15,20,□,□,35,40,
45.
注意:自然数列、奇数列、偶数列也是等差数列.
例2 找出下面的数列的规律并填空. 1,1,2,3,5,8,13,□,□,55,89.
解:这叫斐波那契数列,从第三个数起,每个数都是它前面的两个数之和.这是个有重要用途的数列.8+13=21,13+21=34.所以:
空处依次填:
例3 找出下面数列的生成规律并填空. 1,2,4,8,16,□,□,128,256.
解:它叫等比数列,它的后一个数是前一个数的2倍.16×2=32,32×2=64,所以空处依次填:
例4 找出下面数列的规律,并填空. 1,2,4,7,11
四年级高思奥数之数列与数表含答案
第17讲 数列与数表
内容概述
通过观察数列或数表中的已知数据,发现规律并进行填补与计算的问题,注意数表形式的多样性,计算时常常考虑周期性,或进行合理估算.
典型问题
兴趣篇
1.1,1,4,2,7,3,10,1,13,2,16,3,19,1,22,2,25,3,…,100.请观察上面数列的规律,问:(1)这个数列一共有多少项? (2)这个数列所有数的总和是多少?
2.观察数组(1,2,3),(3,4,5),(5,6,7),(7,8,9)的规律,求:
(1)第20组中三个数的和; (2)前20组中所有数的和.
3.一个数列的第一项是l,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:
(1)第100项是多少? (2)前100项的和是多少?
4. 如图17-1,方格表中的数是按照一定规律填人的.请观察方格表,并填出“?”处的数.
5.如图17-2,数阵中的数是按一定规律排列的,请问:
(1)100在第几行、第几列? (2)第20行第3列的数是多少?
6.如图17-3,从4开始的自然数是按某种规律排列的,请问
小学奥数《等差数列》及其练习
等差数列练习 知识点 1、数列定义:若干个数排成一列,像这样一串数,称为数列。数列中的每一个数称为一项,其中第一个数称为首项(我们将用 a1 来表示),第二个数叫做第二项??以此类推,最后一个数叫做这个数列的末项(我们将用 an 来表示),数列中数的个数称为项数,我们将用 n 来表示。如:2,4,6,8,?,100 2、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。我们将这个差称为公差(我们用 d 来表示),即: d?a2?a1?a3?a2???an?2?an?1?an?an?1 例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。(省略号表示什么?) 练习1:试举出一个等差数列,并指出首项、末项、项数和公差。 3、 计算等差数列的相关公式: (1)通项公式:第几项=首项+(项数-1)×公差 即:an?a1?(n?1)?d (2)项数公式:项数=(末项-首项)÷公差+1 即:n?(an?a1)?d?1 (3)求和公式:总和=(首项+末项)×项数÷2 即:a1?a2?a3??an??a1?an??n?2 1
在等差数列中,如果已知首项、末项、公差。求总和时,应
小学奥数《等差数列》及其练习
等差数列练习 知识点 1、数列定义:若干个数排成一列,像这样一串数,称为数列。数列中的每一个数称为一项,其中第一个数称为首项(我们将用 a1 来表示),第二个数叫做第二项??以此类推,最后一个数叫做这个数列的末项(我们将用 an 来表示),数列中数的个数称为项数,我们将用 n 来表示。如:2,4,6,8,?,100 2、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。我们将这个差称为公差(我们用 d 来表示),即: d?a2?a1?a3?a2???an?2?an?1?an?an?1 例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。(省略号表示什么?) 练习1:试举出一个等差数列,并指出首项、末项、项数和公差。 3、 计算等差数列的相关公式: (1)通项公式:第几项=首项+(项数-1)×公差 即:an?a1?(n?1)?d (2)项数公式:项数=(末项-首项)÷公差+1 即:n?(an?a1)?d?1 (3)求和公式:总和=(首项+末项)×项数÷2 即:a1?a2?a3??an??a1?an??n?2 1
在等差数列中,如果已知首项、末项、公差。求总和时,应
小学奥数 斐波那契数列典型例题
拓展目标:
一:周期问题的解决方法
(1)找出排列规律,确定排列周期。
(2)确定排列周期后,用总数除以周期。
①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个
② 如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。 例1:
(1)1,2,1,2,1,2,…那么第18个数是多少? 这个数列的周期是2,18?2?9,所以第18个数是2. (2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少?
这个数列的周期是3,16?3?5???1,所以第16个数是1. 二:斐波那契数列
斐波那契是意大利中世纪著名的数学家,他曾提出这样一个有趣的有关兔子的问题:
假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 1 1 斐波那契数列(兔子数列)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …
1
你看出是什么规律:
小学奥数-质数与合数
质数于合数
例1、 两个质数的积是46,求这两个质数的和。
例2、 用2,,3,4,5中的三个数能组成哪些三位质数?
例3、 将40,44,45,63,65,78,99,105这八个数平均分成两组,使每组四个数的乘
积相等。
例4、 七个连续质数,从大到小排列为a、b、c、d、e、f、g,已知它们的和是偶数,那么
c= 。
例5、 是否存在两个质数,它们的和等于11?1? ???20个1
例6、 将37拆成若干个不同的质数的和,有多少种不同的拆法?将每一种拆法中的那些质
数相乘,得到最小乘积是多少?
例7、 用0~9这10个数字组成若干个质数,每个数字都恰好用一次,这些质数的和最小
是 。
例8、 试将1、2、3、4、5、6、7分别填入下图方框中,每个数字只能用一次 ( 7 )( 1 )( 4 )(这是一个三位数) ( )( )( )(这是一个三位数) ( )(这是一个一位数)
使得三个数中任意两个都互质(最大公约数是1),其中一个三位数已填好,它是714。
例9、
小学奥数知识系列之--巧算奇偶数列和
小学奥数知识系列之--巧算奇偶数列和
小学奥数知识系列之----规律数求和1
小学奥数知识系列之----规律数求和2
小学奥数知识系列之--简便方法求余数
首届“华罗庚金杯”复赛中有这样一道题: 71427和19的积被7除,余数是几?
有恒心的小朋友会先耐心地乘,再耐心地除,最后得到余数.即:
因此,71427与19的积被7除,余数是2.然而,小明却做出了另外一种方法.请看:先用71427和19两个数分别除以7,得到
再利用乘法的分配律变换算式 71427×19=(10203×7+6)×19 =10203×7×19+6×19
=10203×7×19+6×(2×7+5)
奥数:三年级奥数.杂题.数表规律(A级).学生版
奥数精品
一、数列的定义
按一定次序排列的一列数就叫做数列;数列中每个数都叫做这个数列的项,其中的第一个数称为这个数列的第1项,第2个数称为第2项,第n 个数称为第n 项。
根据数列中项的个数分类,把项数有限的数列(即有有穷多个项的数列)称为有穷数列;把项数无限的数列(即有无穷多个数的数列)称为无穷数列。
研究数列的目的是为了发现其中的内在规律,以作为解决问题的依据。
【诀窍】1,比较简单的数列,一般从相邻两数的和差积商中找规律,稍复杂的数列,要全方位入手,把数列合理地拆分成为几部分,分别考察,还要把每个数与项数之间联系起来考虑。
2,图形中的数在图形中所处的位置,往往与它们之间的变化规律有关,需要仔细进行分析,才能找到规律;
3,由若干数组组成的数列,要分别找出数组中各位商数的规律,然后再按题目要求求解。
【注意】通过观察数表中的已知数据,发现规律并进行补填与计算的问题.这里要注意数表结构的差异,它们通常是按行、按列、沿斜线或螺旋线逐步形成的.涉及小数的,或与其他方面知识相综合的数列问题.
二、等差数列的定义
⑴ 先介绍一下一些定义和表示方法
定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.
譬如:2、5、8、1
小学奥数培训计划与措施
小学奥数培训计划与措施 一、指导思想
奥数活动是一项全面培养学生能力、尤其是数学兴趣的活动。现在越来越多的人已经意识到学习奥数的重要性,奥数曾经一度被人误认为是孩子的负担,而今却变成了提高孩子思考能力,改善孩子思维方式的好武器。应当说,这样的认识对小学奥数教学的健康发展和小学数学教学的健康发展都是有利的。基于这样的认识,在奥数不至于冲击正常的数学教学秩序的情况下,奥数教学可以提升小学生的品质和提高教师的教学水平的积极作用。 二、活动目标
1、以培养学生的数学思想为目标
所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。在小学阶段,数学思想主要有符号思想、集合思想、类比思想、分类思想、替换思想、方程与函数思想、数形结合思想、转化思想、统筹及最优化思想、建模思想等。《小学数学新课程标准》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”因此,小学奥数培训应该着重数学思想的培养,应该以这些思想为目标进行奥数内容的选择和培训。 2、以发展学生的数学思维能力为基础
思维活动的强弱,决定一个人的思维品质。而数学思维能力则是指人们从事数学活动时所必需