bp神经网络算法原理公式

“bp神经网络算法原理公式”相关的资料有哪些?“bp神经网络算法原理公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“bp神经网络算法原理公式”相关范文大全或资料大全,欢迎大家分享。

bp神经网络算法

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

BP神经网络算法 三层BP神经网络如图:

传递函数g 目标输出向量

tk 输出层,输出向量

zk 权值为wjk 传递函数f yj 隐含层,隐含层输出向量

权值为wij 输入层,输入向量

x1x2x3 xn

设网络的输入模式为x?(x1,x2,...xn)T,隐含层有h个单元,隐含层的输出为

y?(y1,y2,...yh)T,输出层有m个单元,他们的输出为z?(z1,z2,...zm)T,目标输出为t?(t1,t2,...,tm)T设隐含层到输出层的传递函数为f,输出层的传递函数为g

于是:yj?f(?wxi?1niji??)?f(?wijxi):隐含层第j个神经元的输出;其中

i?0nw0j???,hx0?1

zk?g(?wjkyj):输出层第k个神经元的输出

j?01m2此时网络输出与目标输出的误差为???(tk?zk),显然,它是wij和wjk的函数。

2k?1下面的步骤就是想办法调整权值,使?减小。

由高等数学的知识知道:负梯度方向是函数值减小最快的方向

因此,可以设定一个步长?,每次沿负梯度方向调整?个单位,即每次权值的调整为:

?wpq?????,?在神经网络中称为学习速率 ?wpq可以证明:按这个方法调整,误差会逐渐减

bp神经网络算法

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

BP神经网络算法 三层BP神经网络如图:

传递函数g 目标输出向量

tk 输出层,输出向量

zk 权值为wjk 传递函数f yj 隐含层,隐含层输出向量

权值为wij 输入层,输入向量

x1x2x3 xn

设网络的输入模式为x?(x1,x2,...xn)T,隐含层有h个单元,隐含层的输出为

y?(y1,y2,...yh)T,输出层有m个单元,他们的输出为z?(z1,z2,...zm)T,目标输出为t?(t1,t2,...,tm)T设隐含层到输出层的传递函数为f,输出层的传递函数为g

于是:yj?f(?wxi?1niji??)?f(?wijxi):隐含层第j个神经元的输出;其中

i?0nw0j???,hx0?1

zk?g(?wjkyj):输出层第k个神经元的输出

j?01m2此时网络输出与目标输出的误差为???(tk?zk),显然,它是wij和wjk的函数。

2k?1下面的步骤就是想办法调整权值,使?减小。

由高等数学的知识知道:负梯度方向是函数值减小最快的方向

因此,可以设定一个步长?,每次沿负梯度方向调整?个单位,即每次权值的调整为:

?wpq?????,?在神经网络中称为学习速率 ?wpq可以证明:按这个方法调整,误差会逐渐减

BP神经网络原理

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

BP神经网络原理

BP网络模型处理信息的基本原理是:输入信 号Xi通过中间节点(隐层点)作用于输出节 点,经过非线形变换,产生输出信号Yk,网 络训练的每个样本包括输入向量X和期望输出 量t,网络输出值Y与期望输出值t之间的偏差, 通过调整输入节点与隐层节点的联接强度取 值和隐层节点与输出节点之间的联接强度Tjk 以及阈值,使误差沿梯度方向下降,经过反 复学习训练,确定与最小误差相对应的网络 参数(权值和阈值),训练即告停止。此时 经过训练的神经网络即能对类似样本的输入 信息,自行处理输出误差最小的经过非线形 转换的信息。

BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、 误差计算模型和自学习模型。 (1)节点输出模型 隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1) 输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2) f-非线形作用函数;q -神经单元阈值。

2作用函数模型 作用函数是反映下层输入对上层节点刺激脉冲 强度的函数又称刺激函数,一般取为(0,1)内连续 取值Sigmoid函数: f(x)=1/(1+e-x)

( 3)误差计算模型 误差计算模型是反映神经网络期望输出与计算输出 之间误差大小

BP神经网络原理及应用

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

BP神经网络原理及应用

1 人工神经网络简介

1.1生物神经元模型

神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相 互信息传递的基本单元。据神经生物学家研究的结果表明,人的大脑一般有1010 1011个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。

1.2人工神经元模型

神经网络是由许多相互连接的处理单元组成。这些处理单元通常线性排列成 组,称为层。每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关联的权重。处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。目前人们提出的神经元模型已有很多,其中提出最早且影响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特性的基础上首先提出的M-P模型,它是大多数神经网络模型的基础。

Yj(t) f( wjixi

标准的BP神经网络算法程序MATLAB

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

标准的带有反馈层得BP神经网络算法的MATLAB程序,方便大家一起学习。

%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计
%yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大, 出来后学习率又还原
%v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 动量项

clear all
clc
inputNums=3; %输入层节点
outputNums=3; %输出层节点
hideNums=10; %隐层节点数
maxcount=1000; %最大迭代次数
samplenum=3; %一个计数器,无意义
precision=0.001; %预设精度
yyy=1.3; %yyy是帮助网络加速走出平坦区

alpha=0.01; %学习率设定值
a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改 字串9
error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间
errorp=zeros(1,samplenum); %同上

v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入

matlab BP神经网络

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

基于MATLAB的BP神经网络工具箱函数

最新版本的神经网络工具箱几乎涵盖了所有的神经网络的基本常用模型,如感知器和BP网络等。对于各种不同的网络模型,神经网络工具箱集成了多种学习算法,为用户提供了极大的方便[16]。Matlab R2007神经网络工具箱中包含了许多用于BP网络分析与设计的函数,BP网络的常用函数如表3.1所示。

表3.1 BP网络的常用函数表 函数类型 前向网络创建函数 传递函数 学习函数 性能函数 显示函数 函数名称 newcf Newff logsig tansig purelin learngd learngdm mse msereg plotperf plotes plotep errsurf

3.1.1BP网络创建函数

1) newff

该函数用于创建一个BP网络。调用格式为: net=newff

net=newff(PR,[S1S2..SN1],{TF1TF2..TFN1},BTF,BLF,PF) 其中,

net=newff;用于在对话框中创建一个BP网络。 net为创建的新BP神经网络; PR为网络输入向量取值范围的矩阵;

[S1S2?SNl]表示网络隐含层和输出层神经元的个数;

{TFlTF2?TF

BP神经网络的算法改进及应用

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

I SN 1 0— 0 4 S 9 3 4 0

E— i e u@C C . e.n mal d f C Cn t : ch t:ww d z . e.n t/ w. n sn t p/ c T l 8— 5— 6 0 6 5 99 4 e: 6 5 5 9 9 3+ 1 6 0 6

C m u n we g n e h oo y电脑知识与技术 o p ̄r o l ea d T c n l K d gVo ., . Fe r a y 2 0,P 9— 3 15 No4, b r 0 9 P.33 9 5 u

B P神经网络的算法改进及应用王爽张吕 .鹰,瑞霞(华师范大学计算机学院,西四川南充 6 7 0 ) 3 0 2

摘要:章介绍了目前人工神经网善领域中 B文 P神经网络的特点及其算法原理, B以 P网络算法的缺点为出发点,不同方面对 B 从 P算法进行改进 .而加快了网络的收敛速度,化了网络的拓扑结构,从优最后对 BP网络在实际 q的主要应用进行了讨论。 -

关键词:工神经网络;P算法;法改进人 B算中图分类号: P 9 T 33文献标识码: A文章编号: 0 9 3 4 ( 0 9 0— 9 3 0 1 0— 0 42 0

基于BP神经网络PID整定原理和算法步骤-精品

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

摘 要

神经网络作为一门新兴的信息处理科学,是对人脑若干基本特性的抽象和模拟。它是以人的大脑工作模式为基础,研究自适应及非程序的信息处理方法。这种工作机制的特点表现为通过网络中大量神经元的作用来体现自身的处理功能,从模拟人脑的结构和单个神经元功能出发,达到模拟人脑处理信息的目的。

目前,在国民经济和国防科技现代化建设中神经网络具有广阔的应用领域和发展前景,其应用领域主要表现在信息领域、自动化领域、工程领域和经济领域等。

本文以BP神经网络作为研究对象。研究的内容主要有:首先介绍了神经网络的概念、控制结构,学习方式等。其次,介绍了人工神经元模型,并对BP神经网络的基本原理及推导过程进行详细阐述。再次将BP神经网络的算法应用于PID中,介绍了基于BP神经网络PID整定原理和算法步骤。最后利用 MATLAB/Simulink对BP神经网络PID控制系统进行仿真,得出BP神经网络的控制效果明显好,它具有很强的自整定,自适应功能。

关键词:BP算法,PID控制,自整定

I

ABSTRACT

As a kind of emerging information processing science,the neural network can si

BP神经网络预测代码

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

x=[54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507

109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 1

BP神经网络实验_Matlab

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

计算智能实验报告

实验名称:BP神经网络算法实验

班级名称:专 业:姓 名:学 号:

级软工三班 软件工程 李XX

2010 XXXXXX2010090

一、 实验目的

1)编程实现BP神经网络算法;

2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系;

3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。

二、 实验要求

按照下面的要求操作,然后分析不同操作后网络输出结果。 1)可修改学习因子

2)可任意指定隐单元层数

3)可任意指定输入层、隐含层、输出层的单元数 4)可指定最大允许误差ε

5)可输入学习样本(增加样本)

6)可存储训练后的网络各神经元之间的连接权值矩阵;

7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果 。

三、 实验原理

1 明确BP神经网络算法的基本思想如下:

在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架

反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结