粒子群算法 模拟退火 遗传算法
“粒子群算法 模拟退火 遗传算法”相关的资料有哪些?“粒子群算法 模拟退火 遗传算法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“粒子群算法 模拟退火 遗传算法”相关范文大全或资料大全,欢迎大家分享。
混合粒子群算法:基于模拟退火的算法
混合粒子群算法:基于模拟退火的算法
1. 算法原理
模拟退火算法在搜索过程中具有概率突跳的能力,能够有效地避免搜索过程中陷入局部极小解。模拟退火算法在退火过程中不但接受好的解,而且还以一定的概率接受差得解,同时这种概率受到温度参数的控制,其大小随温度的下降而减小。
2. 算法步骤
(1) 随机初始化种群中各微粒的位置和速度;
(2) 评价每个微粒的适应度,将当前各微子的位置和适应值存储在各微子的pi中,将所
有pbest的中适应最优个体的位置和适应值存储在pg中;
(3) 确定初始温度;
(4) 根据下式确定当前温度下各pi的适配值:
eN?(f(pi)?f(pg))/tTF(pi)?
?(f(pi)?f(pg))/t?ei?1(5) 采用轮盘赌策略从所有pi中确定全局最优的某个替代值pg?,然后根据下式更新各
微粒的速度和位置:
vi,j(t?1)???vi,j(t)?c1r1[pi,j?xi,j(t)]?c2r2[pg,j?xi,j(t)]?
xi,j(t?1)?xi,j(t)?vi,j(t?1),j?1,2,...d
??2?C?2C?4C2,C?c1?c2
(6) 计算各微粒新的目标值,更新各微粒的pi值及群体的pg值;
(7) 进行退温
用模拟退火算法或者遗传算法解决TSP问题程序
用模拟退火算法、遗传算法(或蚁群算法)求解10城市的TSP(旅行商)问题,计算旅行封闭的最短旅行距离。
解:用遗传算法解决TSP问题,首先需要确定城市个数及城市间的距离,随机产生城市序列作为一个个体,确定目标函数,通过遗传算法的复制、交叉、变异求出最优解。
目标函数f x = ????=0?? ??,??+1 +??(??,0)
??? ?? +???????? ?? ?? ???????适应度函数F x =
0 ??(??)≥????????
遗传算法的步骤为
复制+交叉+变异=新一代
遗传算法主程序:
DG=0.9; MAXDD=100; ZQDX=150; Pc=0.7; Pm=0.01;
ZQ=[0 118 1272 2567 1653 2097 1425 1177 3947 1574 118 0 1253 2511 1633 2077 1369 1157 3961 1518 1272 1253 0 1462 380 1490 821 856 3660 385 2567 2511 1462 0 922 2335 1562 2165 3995 933 1653 1633 380 9
引入模拟退火机制的新型遗传算法
引入模拟退火机制的新型遗传算法
第32卷 第1期 电 子 科 技 大 学 学 报 Vol.32 No.1 2003年2月 Journal of UEST of China Feb. 2003
引入模拟退火机制的新型遗传算法
张 晖* 吴 斌 余张国
(西南科技大学计算机学院 四川绵阳 621002)
【摘要】提出了一种将遗传算法与模拟退火算法相结合的新搜索算法。该算法以遗传算法运算流程作为主体流程,并把模拟退火机制融入其中,用以调整优化群体。在进化过程中使用了保留策略,以保存适应度较好的个体。在模拟退火算法的跳变操作过程中使用类似遗传算法变异来实现,先作置反操作,再作前后等长交换操作,以防止陷入局部最优。实验表明,该算法与传统遗传算法相比,提高了进化速度和全局寻优能力。
关 键 词 遗传算法; 模拟退火算法; 进化速度; 全局搜索 中图分类号 TP301.6 文献标识码
引入模拟退火机制的新型遗传算法
引入模拟退火机制的新型遗传算法
第32卷 第1期 电 子 科 技 大 学 学 报 Vol.32 No.1 2003年2月 Journal of UEST of China Feb. 2003
引入模拟退火机制的新型遗传算法
张 晖* 吴 斌 余张国
(西南科技大学计算机学院 四川绵阳 621002)
【摘要】提出了一种将遗传算法与模拟退火算法相结合的新搜索算法。该算法以遗传算法运算流程作为主体流程,并把模拟退火机制融入其中,用以调整优化群体。在进化过程中使用了保留策略,以保存适应度较好的个体。在模拟退火算法的跳变操作过程中使用类似遗传算法变异来实现,先作置反操作,再作前后等长交换操作,以防止陷入局部最优。实验表明,该算法与传统遗传算法相比,提高了进化速度和全局寻优能力。
关 键 词 遗传算法; 模拟退火算法; 进化速度; 全局搜索 中图分类号 TP301.6 文献标识码
模拟退火算法
模拟退火算法
摘要:模拟退火算法是一种新的随机搜索方法,它来源于固体退火原理,基于MetropoliS接受准则,与以往的近似算法相比,具有以一定的概率接受恶化解,引进算法控制参数,隐含并行性等特点;模拟退火算法应用范围很广,其应用需要满足三方面的要求,具有描述简单、使用灵活、运行效率高和较少受初始条件约束等优点,然而收敛速度慢,执行时间长,特别适合并行计算。 关键词:模拟退火算法来源;基本思想;特点;一般要求;优缺点
1.引子
在科学与工程计算中,经常发生的一个问题是在Rn中或者是在一个有界区域上求某个非线性函数f(x)的极小点。在f(x)可导时,一个最基本的算法就是最速下降法。这一方法从某一选定的初值开始,利用如下公式进行迭代,即
xn 1 xn n f(xn)
此处 f表示函数梯度, n是一个与迭代步数有关的参数,它的适当选取,
保证每步迭代均使函数值下降。除此之外,还存在多种寻求函数极小的算法。然而以速降法为代表的传统算法具有共同的缺点,它们都不保证求得全局极小,只能保证收敛到一个由初值x0决定的局部极小点。而模拟退火算法的出现很好地解
决了这个问题。
2.SA算法的起源 模拟退火算法来源于固体退火原理,其核心思想与热力学的原理极为类似,尤其相似于液
模拟退火算法综述
综合性介绍模拟退火算法
《微计算机信息》1998年第14卷第5期
模拟退火算法综述
A
SummaryOnTheSimulatedAnnealingAlgorithm
(434104 湖北荆州师范高等专科学校计算机系) 谢云
【摘要】本文综合介绍模拟退火算法的原理、实现形式、渐近收敛性、应用及其并行策略,对模拟退火算法给出一个简明、全面、客观的综合评价。
关键词:模拟退火算法,组合优化问题,NP完全问
题,并行算法
Abstract:Inthispaper,asummaryonprinciple,real2izableform,asymptoticconvergence,applicatiparalleltacticsofthesimalgoisgiven.A,,psiisgiven.ngAlgorithm,
CobinatorialOptimizationProblem,NondeterministicPolynomialComplete
Problem,ParallelAlgorithm
于固体退火过程:将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达
Matlab模拟退火算法
Matlab模拟退火算法——走过数模
模拟退火算法
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
模拟退火算法的模型
模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想
(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
(2) 对k=1
粒子群算法
分类号:X169 U D C:D10621-408-(2011)0261-0 密 级:公 开 编 号:2007042029
XXX 学位论文
PSO-PPR颗粒物源解析技术研究
论文作者姓名: 申请学位专业: 申请学位类别: 指导教师姓名(职称): 论文提交日期:
XXX 环境工程 工科学士 XXX(副教授) 2011年06月 日
PSO-PPR颗粒物源解析技术研究
摘 要
针对投影寻踪回归法(PPR)在实现大气颗粒物源解析过程中中需要调整的参数较多、程序编辑工作量大的问题,应用粒子群算法(PSO)将PPR模型的参数优化,得到各污染源对大气颗粒物的优化贡献率。这种新方法应用于成都市大气颗粒物的源解析结果与其他多种源解析法得出的结果基本一致,理论分析和应用实践表明该方法应用于大气颗粒物源解析研究具有可行性并且具有方便、准确和实用性强等特点。
关键词:大气颗粒物;源解析;投影寻踪回归;粒子群算法
Technology Research of Projection Pursuit Regression Source Apportionment of Atmosp
粒子群算法
分类号:X169 U D C:D10621-408-(2011)0261-0 密 级:公 开 编 号:2007042029
XXX 学位论文
PSO-PPR颗粒物源解析技术研究
论文作者姓名: 申请学位专业: 申请学位类别: 指导教师姓名(职称): 论文提交日期:
XXX 环境工程 工科学士 XXX(副教授) 2011年06月 日
PSO-PPR颗粒物源解析技术研究
摘 要
针对投影寻踪回归法(PPR)在实现大气颗粒物源解析过程中中需要调整的参数较多、程序编辑工作量大的问题,应用粒子群算法(PSO)将PPR模型的参数优化,得到各污染源对大气颗粒物的优化贡献率。这种新方法应用于成都市大气颗粒物的源解析结果与其他多种源解析法得出的结果基本一致,理论分析和应用实践表明该方法应用于大气颗粒物源解析研究具有可行性并且具有方便、准确和实用性强等特点。
关键词:大气颗粒物;源解析;投影寻踪回归;粒子群算法
Technology Research of Projection Pursuit Regression Source Apportionment of Atmosp
模拟退火算法及其应用研究
前言
模拟退火算法及其应用研究
1 前言
非数值算法是基础科学,工程技术和管理科学等领域中常用的一类计算方法,如许多解组合优化问题的算法就是典型的非数值算法,由于这些问题的尤其是其中的NP完全问题本身所固有的计算复杂性,求其精确解的计算量往往随问题规模呈指数型增长,以致使用任何高速计算都需要耗费大量的时间,甚至根本无法实现.因此,研究非数值计算的近似算法及其并行实现的途径具有十分重要的实际意义.
模拟退火算法是近几年提出的一种适合解大规模组合优化问题,特别是解NP完全问题的通用有效近似算法,它与以往的近似算法相比,具有描述简单,使用灵活,运用广泛,运行效率高和较少受初始条件限制等优点,而且特别适合并行计算.因此不仅具有很高的实用价值,而且对推动并行计算的研究也有着重要的理论意义.
组合优化问题的目标函数是从组合优化问题的可行解集中求出最优解.组合优化问题有三个基本要素:变量,约束和目标函数,在求解过程中选定的基本参数称为变量,对变量取值的种种限制称为约束,表示可行方案衡量标准的函数称为目标函数.货郎担问题(TSP)是组合优化问题中最为著名的问题,它易于描述难于