直角三角形边长计算公式
“直角三角形边长计算公式”相关的资料有哪些?“直角三角形边长计算公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“直角三角形边长计算公式”相关范文大全或资料大全,欢迎大家分享。
三角形边长计算公式
三角形边长计算公式
发表——斜三角形三边长的经典计算公式:用《程形学定边L变
大写的是角,小写的是边。
现在你是已知A、B 、C和c求a、b。求出两边后相加即可。
我们研究的是定边长L变
1:正弦定理:已知三角形的两角与一边,求其它的角和边。
2:余弦定理:已知三角形的两边与其中一边的对角,求其它的角和边;的应用上。
3:当斜三角形三个边长已知两个边长不用角就无法计算求解第三边长。
4:已知斜三角形的一个边长和一个角就无法计算其他两个边长和两个角。
5:已知斜三角形的一个角,可求出斜三角形的其它的两个角,就更无法计算了。
《程形学自然法则》是研究:
3:当斜三角形三个边长已知两个边长不用角计算求解第三边长。
任意三角形求解经典公式
三角形边长计算公式
三角形边长计算公式
发表——斜三角形三边长的经典计算公式:用《程形学定边L变
大写的是角,小写的是边。
现在你是已知A、B 、C和c求a、b。求出两边后相加即可。
我们研究的是定边长L变
1:正弦定理:已知三角形的两角与一边,求其它的角和边。
2:余弦定理:已知三角形的两边与其中一边的对角,求其它的角和边;的应用上。
3:当斜三角形三个边长已知两个边长不用角就无法计算求解第三边长。
4:已知斜三角形的一个边长和一个角就无法计算其他两个边长和两个角。
5:已知斜三角形的一个角,可求出斜三角形的其它的两个角,就更无法计算了。
《程形学自然法则》是研究:
3:当斜三角形三个边长已知两个边长不用角计算求解第三边长。
任意三角形求解经典公式
直角三角形教案
教 学 设 计
月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全
直角三角形教案
教 学 设 计
月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全
相似直角三角形判定
直角三角形相似的判定AA′c
b∟
B
a
C
B′
C′
一、复习提问1、到目前为止我们总共学过几种判定两 个三答:
角形相似的方法?
(1)两角对应相等的两个三角形相似。 (2)两边对应成比例且夹角相等的两个三角形相似。 (3)三边对应成比例的两个三角形相似。
2、判定两个直角三角形相似有几种方法?答:一个锐角对应相等或两直角边对应成比例。
课堂练习填空:(填相似或不相似)
1、一个三角形有两个角分别是60°和35°, 另一个三角形的两个角分别是60°和85°, 那么这两个三角形 。 相似2、一个三角形的三边分别是3、4、5,另 一个三角形的三边分别是6、8、10,那么 这两个三角形 相似 。
3、一个三角形的两边分别是3和7, 它们的夹角是35°,另一个三角形的 一个角是35°,夹这个角的两边分别 是14和6,那么这两个三角形相似 。
例1、求证:直角三角形被斜边上的高分成的两个直角三角形 和原三角形相似。 已知:在RtΔABC中,CD是斜边AB上的高。 求证: ΔACD ∽ ΔABC ∽ ΔCBD 。 证明: ∵ ∠A=∠A,∠ADC=∠ACB=900, ∴ ΔACD∽ΔABC(两角对应相等,两 三角形
直角三角形教案
教 学 设 计
月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全
直角三角形的教学反思
直角三角形的教学反思
本节课学习直角三角形的性质及判定,先引导学生回顾以前对勾股定理的证明,再引导学生学习勾股定理的逆定理的证明,直角三角形全等的条件和勾股定理及其逆定理在前面已由学生通过一些直观的方法进行了探索,所以学生对这些结论已经有所了解,对于它们,本节努力将证明的思路展现出来.例如以前我们曾用割补法验证过勾股定理,而此处对勾股定理的证明应以我们认定的几条公理和由此推出的定理为依据进行,虽然证明的方法有多种,但对学生来说,这些都有难度,因此直接展现给学生学习。
在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题。学生对于命题和逆命题中题设和结论分析和把握不是太准,部分学生尤其是在语言表述方面仍然有些欠缺,作为教师要关注到学生的个体差异,对于学习本节知识有困难的学生要给予及时的帮助和指导。使每一个学生都能经历证明的过程,为他们提供充分地寻找证明思路的时间、空间和方法,体会证明的必要性。另外学生对于命题成立的证明方法,锻炼他们的演绎推理能力离目标还是有一定的差距。所以作为教师一定不能急躁,要本着以学生为本的目的,注意学生个体差异
专题:直角三角形(中考复习)
课题:直角三角形(中考复习)
一、知识梳理:
1、概念:有一个角是的三角形叫做直角三角形。
2、性质:(1)直角三角形的两个锐角。
(2)直角三角形斜边上的中线等于斜边的 。
(3)在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的。
(4)勾股定理:在直角三角形中,两条直角边a、b的等于斜边长c的,即=c2 。
3、判定:(1)如果三角形一边上的中线等于这条边的,那么这个三角形为直角三角形。
(2)勾股定理的逆定理:如果三角形的两边的等于第三边的,那么这个三角形是直角三角形。
二、预习自测:
1、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则
∠1+∠2等于( )
A.270° B.135°C.90° D. 315°
变式1:如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若
AB=10,AC=5,则图中等于60°的角的个数为( )
A.2 B.3 C.4 D.5
2、如图,△ABC中,AB=AC,AD是角平分线,E为AC的中点. 若DE=
5cm,则AB=;若∠CDE=70º,则
直角三角形与勾股定理
直角三角形与勾股定理
一、选择题
1. (2014?山东枣庄,第3题3分)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为( )
A. 17° 考点: 分析: 34° B. 56° C. 124° D. 平行线的性质;直角三角形的性质 根据两直线平行,同位角相等可得∠DCE=∠A,再根据直角三角形两锐角互余列式计算即可得解. 解答: 解:∵AB∥CD, ∴∠DCE=∠A=34°, ∵∠DEC=90°, ∴∠D=90°﹣∠DCE=90°﹣34°=56°. 故选C. 点评: 本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键. 2. 1.(2014?湖南张家界,第7题,3分)如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是( )
4 A.B. 4 8 C. D. 8 考点:线段垂直平分线的性质;含30度角的直角三角形;勾股定理. 分析:求出∠ACB, 根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可. 解答:解:如图,∵在Rt△ABC中
解直角三角形的应用
专题复习:解直角三角形的应用
1、(2014泸州)海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值) ADCB
2、(2013泸州)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30?,在A、C之间选择一点B (A、B、C三点在同一直线上),用测角仪测得塔顶D的仰角为75?,且AB间距离为40m. (1)求点B到AD的距离;
(2)求塔高CD(结果用根号表示)。 D 30°75°A BC
3、(2011?泸州)如图,一艘船以每小时60海里的速度自A向正北方向航行,船在A处时,灯塔S在船的北偏东30°,航行1小时后到B处,此时灯塔S在船的北偏东75°,(运算结果保留根号) (1)求船在B处时与灯塔S的距离;
(2)若船从B处继续向正北方向航行,问经过多长时间船与灯塔S的距离最近.
4、(2013广安)如图9,广安市防洪指挥部发现渠江