有限元课程设计的内容
“有限元课程设计的内容”相关的资料有哪些?“有限元课程设计的内容”相关的范文有哪些?怎么写?下面是小编为您精心整理的“有限元课程设计的内容”相关范文大全或资料大全,欢迎大家分享。
有限元课程设计
前言
【有限元法】
有限元法是R. courant于1943年在解决圣维南扭转问题近似解时首先提出来的。其后,W. prager于1947年,J. L. syge于1953年提出了超椭圆法,促进了这方面工作的发展。有限元法在弹性力学平面问题中第一个成功的应用,首先是由美国学者M. J. turner和R. W. clough等人于1956年解决飞机结构强度是提出来的。并于1960年有R. W. clough首次将这种方法起名为有限元法(The Finite Element Method)。1965年由我国数学家冯康教授和西方科学家各自独立奠定了有限元法的数学基础。由于越来越多的数学家加入了发展有限元法的行列,这种方法便由工程局限性中解脱出来,代之以统一的观点和严密的数学描述,并确立了它的数学基础。
经过几十年的发展,有限元法已经成为现代结构分析的有效方法和主要手段。它的应用已经从弹性力学的平面问题扩展到空间问题和板壳问题,如:对拱坝、涡轮叶片、飞机和船体等复杂结构进行应力分析;由平衡问题扩展到稳定问题与动力问题,如:对结构在地震力与波浪力作用下的动力反应进行分析;由弹性力学问题扩展到弹塑性与黏弹性问题,如:土力学与岩石力学问题﹑疲劳力学与脆性
有限元课程设计
前言
【有限元法】
有限元法是R. courant于1943年在解决圣维南扭转问题近似解时首先提出来的。其后,W. prager于1947年,J. L. syge于1953年提出了超椭圆法,促进了这方面工作的发展。有限元法在弹性力学平面问题中第一个成功的应用,首先是由美国学者M. J. turner和R. W. clough等人于1956年解决飞机结构强度是提出来的。并于1960年有R. W. clough首次将这种方法起名为有限元法(The Finite Element Method)。1965年由我国数学家冯康教授和西方科学家各自独立奠定了有限元法的数学基础。由于越来越多的数学家加入了发展有限元法的行列,这种方法便由工程局限性中解脱出来,代之以统一的观点和严密的数学描述,并确立了它的数学基础。
经过几十年的发展,有限元法已经成为现代结构分析的有效方法和主要手段。它的应用已经从弹性力学的平面问题扩展到空间问题和板壳问题,如:对拱坝、涡轮叶片、飞机和船体等复杂结构进行应力分析;由平衡问题扩展到稳定问题与动力问题,如:对结构在地震力与波浪力作用下的动力反应进行分析;由弹性力学问题扩展到弹塑性与黏弹性问题,如:土力学与岩石力学问题﹑疲劳力学与脆性
有限元大作业matlab - 课程设计例子
有 限
元 大 作 业 程 序 设
学校:天津大学
院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\\\\\\\\\\\\ 指导老师:
计
连续体平面问题的有限元程序分析
[题目]:
如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界
上受正向分布压力,
p?1kNm,同时在沿对角线y轴上受一对集中压
力,载荷为2KN,若取板厚t?1,泊松比v?0。
2kN 1kN/m 2kN
[分析过程]:
由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。
[程序原理及实现]:
用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下:
问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模
有限元法课程总结12
有限元法课程总结
摘 要:阐述有限元发展的大致历程。有限元法的基本思想,以及有限元在土木
工程中的运用。并以自己对有限单元法的了解,结合自己的所学、所悟,简述有限单元法的Matlab语言实现的一点体会。
关键词:有限元(FEM);Matlab程序;总结
1有限元法的发展历程
1960年,Clough[1]在求解平面弹性问题时,第一次提出了“有限单元法”的概念,从此,有限元诞生并成为一门新兴的学科。 有限元法(FEM)是计算力学中的一种重要的方法, 它是20 世纪50 年代末60 年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中, 用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题, 有限元法则是一种有效的分析方法。有限元法作为一种离散化的数值解法,也已成为应用数学的一个新的分支。
有限元法概念浅显,容易掌握,可以在不同的水平上建立起对该法的理解,既可以通过非常直观的物理解释,也可以建立基于严格的数学分析的理论。它不仅对结构物的复杂几何形状有很强的适应性,也能应用于结构物的各种物理问题,如静力问题、动力问题、非线性问题、热
有限元程序设计
目 录
摘要……………………………………………………………2 第一章 题目的意义 …………………………………………2 第二章 理论分析及程序编制思路……………………………3
2.1传统方法静定桁架影响线 ……………………………3 2.2有限元法编程作影响线 ………………………………3 2.2.1 影响线绘制基本思路 ……………………………3 2.2.2桁架内力计算 ……………………………………4 2.2.3桁架内力影响线的绘制 ……………………………5
第三章 程序设计框图…………………………………………7 第四章 程序编制………………………………………………8
4.1编制说明………………………………………………8 4.2程序代码………………………………………………8
第五章 计算实例……………………………………………10 第六章 结论…………………………………………………12 参考文献………………………………………………………12
静定平面桁架影响线绘制
摘要:本课程设计介绍了平面静定桁架影响线软件编程作法。
它利用有限元的的思想,以maple为编程工具,将有限元思想与世界上最强大的符号计算与无与伦比的数值计算maple
有限元教材-第十章 有限元程序设计
第十章有限元程序设计
有限元方法作为一门系统的技术,仅学会了它的基本理论是远远不够的,只有形成完整的计算程序,问题才最终得到了解决。完成这样的有限元程序设计是一项工作量很大的工程。本章就是要结合简单的有限元教学程序FEMED,简要介绍有限元程序设计技术。FEMED是专为有限元程序设计教学编制的程序,它不包含复杂的前后处理功能,可进行平面问题及平面桁架的线弹性静力分析,在程序结构上与大型程序类似,具有计算单元的任意扩充功能,在方程的组集和求解上也采用了较为流行的变带宽存储方式。
有限元程序大致可分为两类,第一类是专用程序,主要用于研究或教学,一般这类程序规模较小,前后处理功能较弱。用于研究的程序能够解一些特殊的问题,满足研究工作的需要。而教学程序则是为了学生了解有限元的主要结构和设计方法设计的,程序比较简单,FEMED就属于这类程序。第二类是大型通用程序,是大型结构分析的得力工具,目前国际上流行的大约有2000多种。常用的有NASTRAN、MARC、ANSYS、ADINA和ABAQUS等。这类程序一般前后处理功能比较强,有友好的界面,能进行大型计算,但往往无法完成具有特殊要求的计算。通过本章的学习,使读者初步掌握有限元编程的基本方法,具有开发特殊功
有限元、边界元、有限差分法的区别
penglining 发表于 2007-5-16 08:26 有限元法、边界元法、有限差分法的区别和各自的优点
请问:有限元法、边界元法、有限差分法等方法有哪些区别和各自的优点?尤其是在声学方面。 谢谢!
fossiler 发表于 2007-5-19 14:00 网格的跑分上不同,差分要求模型规则,有限元可以是任意不规则模型,
hillyuan 发表于 2007-5-21 17:45 FEM: irregular grid-> easy to describe complex shape, hard in mesh generation
\\.a4hj
FDM: regular mesh -> easy in grid generation, hard to describe complex shape=> less accurate than FEM
BEM: irregular mesh in boundary -> mesh generation much easier than that of FEM. need much less computation resource than the above two. BUT ne
有限元报告
风vrvb
有限元部分实验报告
F0805102班 5080519046 王江
一、问题描述
一个带圆孔平板如图,内孔半径1mm,平板为方形,其边长为20mm。两侧受均布拉 伸载荷q=1000N/mm。平板材料性能参数包括:泊松比0.3,弹性模量E=200GPa。试分析平 板内部应力场。扩展讨论:当小孔直径变化时,孔边上的应力将会如何变化。
二、模型描述
2.1 模型简化
利用对称性原理,我们可以只对平板
的四分之一进行研究。
如右图所示,考虑第一象限中的平板:
对于X轴上的分应力fxx及fxy,由于对称性
可知fxy=0,且X轴上的质点在Y方向应没有
位移。 同理对于Y轴上的分应力fyx及fyy,
可由对称性推出 fyx=0,且Y轴上的质点在
X方向应没有位移。 因此可将该部分平板看
做只有一边受外载荷q,且在X轴上受Y=0,
Y轴上受X=0的边界约束。 而由对称性可知,
二、三、四象限中的平板受载荷及边界条件
情况与第一象限完全一致。因此只研究1/4
平板是合理的,与研究整体平板结果相同。
2.2、实验模型
模型单元如右上图所示,建立以(0 0 0)为圆心,(1 0 0)和(0 1 0)为边界的圆弧,再以(10 0 0)及(10 10 0)、(10 1
有限元定义及齿轮有限元分析
齿轮弯曲应力的有限元分析
摘 要:本文对有限元的概念和分析方法做了介绍,利用有限元分析软件ANSYS对UG建模的齿轮进行了分析,得出了齿轮在不同载荷下,弯曲应力的变化情况,对齿轮的设计提供了理论依据。
关键词:ANSYS;有限元;齿轮
有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。
有限元分析可被用来分析比较复杂的、用一般地说代数方法无法足够精确地分析的系统,它可以提供使用其它方法无法提供的结果。在实践中一般使用电脑来解决在分析时出现的巨量的数和方程组。
在分析一个物体或系统中的压力和变形时有限元分析是一种常用的手段,此外它还被用来分析许多其它问题如热传导、流体力学和电力学。
通用有限元分析软件有:德国的ASKA、英国的PAFEC、法国的SYSTUS、美国的ABQU
有限元分析
基于UG的有限元分析
1. 模型的建立
利用UG8.0/ Modeling 模块建立模型,如图1所示:
图1 模型
2. 新建有限元模型
1) 单击【开始】→【高级仿真】命令,在【仿真导航器】窗口中右击单击【Rocker.prt】节点,在出的快捷菜单中单击【新建FEM】命令,弹出【新建部件文件】对话框,默认名称、文件夹,单击【确定】按钮。
2) 弹出【新建FEM】对话框,设置求解器为 NX NASTRAN。分析类型为结构分析。单击【确定】按钮,进入了创建有限元模型的环境。 3) 单击工具栏的【材料属性】
图标,弹出【指派材料】
对话框,选择好实体模型,在【材料】列表框中单击【Steel】,
再单击【确定】按钮即完成部件材料属性设置。 4) 单击工具栏中的【物理属性】
图标,弹出图2所示的
【物理属性表管理器】对话框,单击【创建】按钮,弹出【PSOLID】(体单元)对话框,如图2所示,在【材料】列表框中选取【Steel】选项,其他选项默认,单击【确定】按钮。返回到【物理属性表管理器】对话框。单击【关闭】按钮退出。
图2 【PSOLID】对话框
5) 单击工具栏中的【网格捕集器】
图标,弹出图3所示
的【网格捕集器】对话框,在【实体属性】列表框中选取上述设置的