立体几何中的向量方法
“立体几何中的向量方法”相关的资料有哪些?“立体几何中的向量方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“立体几何中的向量方法”相关范文大全或资料大全,欢迎大家分享。
《立体几何中的向量方法》教学设计
《立体几何中的向量方法》教学设计(2)
【教学目标】利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题. 【教学重点】:坐标法与向量法结合.
【教学难点】:适当地建立空间直角坐标系及添加辅助线. 【教学课时】:1课时 【课前准备】:课题 【教学过程设计】:
(1)点到平面的距离: 1.(一般)传统方法:
利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离. 在Rt?PAO中,
??O?PdnAsin??d|AP|?d?|AP|sin?
l?P又sin??|AP?n||AP||n|
?dn?d?|AP?n||n|A?O(其中AP为斜向量,n为法向量)
例1:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.
分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.
解:如图,设CD?4i,CB?4j,CG?2
立体几何中的,向量方法(坐标法)
高二数学学案 教案编写: 审核人: 高二数学组 使用时间: 编号:1
3.2.立体几何中的向量方法(坐标法) 【学习目标】熟练掌握解决立体几何问题的坐标方法; 【学习重点】坐标法解决立体几何问题的三个步骤; 【学习难点】立体几何问题到向量坐标问题的转化; 【学习过程】 1、 直线的方向向量: 。 2、平面的法向量: 。 3、 例题2:如图二面角中α---L---β中AC、BD都与L垂直AC=a BD=b CD=c AB=d 求二面角α---L---β的余弦值 F'βB C αDlA例题讲解 D'例题1:如图四棱柱ABCD-A'B'C'D'中以A为顶点的三条棱长都相等,且它们彼此
立体几何中的,向量方法(坐标法)
高二数学学案 教案编写: 审核人: 高二数学组 使用时间: 编号:1
3.2.立体几何中的向量方法(坐标法) 【学习目标】熟练掌握解决立体几何问题的坐标方法; 【学习重点】坐标法解决立体几何问题的三个步骤; 【学习难点】立体几何问题到向量坐标问题的转化; 【学习过程】 1、 直线的方向向量: 。 2、平面的法向量: 。 3、 例题2:如图二面角中α---L---β中AC、BD都与L垂直AC=a BD=b CD=c AB=d 求二面角α---L---β的余弦值 F'βB C αDlA例题讲解 D'例题1:如图四棱柱ABCD-A'B'C'D'中以A为顶点的三条棱长都相等,且它们彼此
《立体几何中的向量方法》教学设计
《立体几何中的向量方法》教学设计(2)
【教学目标】利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题. 【教学重点】:坐标法与向量法结合.
【教学难点】:适当地建立空间直角坐标系及添加辅助线. 【教学课时】:1课时 【课前准备】:课题 【教学过程设计】:
(1)点到平面的距离: 1.(一般)传统方法:
利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离. 在Rt?PAO中,
??O?PdnAsin??d|AP|?d?|AP|sin?
l?P又sin??|AP?n||AP||n|
?dn?d?|AP?n||n|A?O(其中AP为斜向量,n为法向量)
例1:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.
分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.
解:如图,设CD?4i,CB?4j,CG?2
立体几何中的向量方法之方向向量与法向量
3.2立体几何中的向 量方法---------方向向量与法向量
一、方向向量与法向量 1.直线的方向向量如图, l 为经过已知点 A 且平行于非零向量 a 的直线,那么非零向量 a 叫做直线 l 的方向向量。
换句话说,直线上的非零向量叫做直线的 方向向量
A
l
a
P
直线的方向 向量不唯一
直线l的向量式方程
AP ta
练习 (, 1 2, 3 ),( B 2, 1, 2 ),(, P 1 1, 2 ) 2.已知两点 A , 点 Q 在 OP 上运动,求当 QA QB 取得最小值时,点 Q 的坐标.解:设 OQ OP ( ) ∴ QA QB 6 16 , ∴当 时, QA QB 取得最小值, 4 4 8 此时 Q( , , ) 3 3 3
2、平面的法向量
换句话说,与平面垂直的非零向量叫做平面 的法向量 平面 α的向量式方程 注:平面 α的法向量 不唯一 l
a AP 0
几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互 相平行; 3.向量n 是平面的法向量,向 量m是与平面平行或在平面内, 则有
aAP
n m 0
巩固性训练11.设
a,
立体几何中的向量方法3——空间角
3.2立体几何中的向量方法——空间角
1、两条直线的夹角:设直线 l , m 的方向向量分别为 a , b ,
a b 两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos ; 2 ab
l
l
a
m
a b
m
例: 在直三棱柱ABC A1 B1C1中,BC AC ,BC CA CC1 , 取A1 B1、A1C1的中点D1、F1, 求BD1和AF1所成的角的余弦值.zC1
解:以点C为坐标原点建立空间直角坐标 系C xyz,如图所示,设CC1 1则: F11 1 1 A(1, 0, 0), B (0,1, 0), F1 ( , 0,1), D1 ( , ,1) 2 2 2
D1C
B1
A1A
1 所以: AF1 ( , 0,1), BD1 ( 1 , 1 ,1) 22 2
B
y
1 1 AF1 BD1 30 4 cos AF1, BD1 10 | AF1 || BD1 | 5 3 4 2 30 所以 BD1与 AF1 所成角的余弦值为 10
x
2、直线与平面的夹角: 设直线 l 的方向向量分别为 a ,平面 的 法向量分别为 u ,
a u 直线 l
立体几何中的向量方法之方向向量与法向量
3.2立体几何中的向 量方法---------方向向量与法向量
一、方向向量与法向量 1.直线的方向向量如图, l 为经过已知点 A 且平行于非零向量 a 的直线,那么非零向量 a 叫做直线 l 的方向向量。
换句话说,直线上的非零向量叫做直线的 方向向量
A
l
a
P
直线的方向 向量不唯一
直线l的向量式方程
AP ta
练习 (, 1 2, 3 ),( B 2, 1, 2 ),(, P 1 1, 2 ) 2.已知两点 A , 点 Q 在 OP 上运动,求当 QA QB 取得最小值时,点 Q 的坐标.解:设 OQ OP ( ) ∴ QA QB 6 16 , ∴当 时, QA QB 取得最小值, 4 4 8 此时 Q( , , ) 3 3 3
2、平面的法向量
换句话说,与平面垂直的非零向量叫做平面 的法向量 平面 α的向量式方程 注:平面 α的法向量 不唯一 l
a AP 0
几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互 相平行; 3.向量n 是平面的法向量,向 量m是与平面平行或在平面内, 则有
aAP
n m 0
巩固性训练11.设
a,
导学案 立体几何中的向量方法(一)
这是一份自编的导学案,供参考
立体几何中的向量方法 (一)
【使用说明及学法指导】 使用时间:
1.先精读一遍教材P102—P104,用红色笔进行勾画;再针对导学案问题导学部分二次阅读并回答,时间不超过20分钟; 2.限时完成导学案合作探究部分,书写规范,AA完成所有题目,对于选作部分BC层可以不做;
3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;
4.必须记住的内容:直线、平面、空间中向量的分解;平面的法向量概念;线线平行与垂直、线面平行与垂直、 面面平行与垂直的向量判定条件.
【学习目标】
1.理解平面的法向量概念;
2.自主学习、合作交流,会用直线的方向向量和平面的法向量描述各种平行和垂直关系,探究各种平行和垂直关系的向量运算方法;
3.激情投入,高效学习,强化空间想象能力及数形转化能力.
一、问题导学:
1. 如何用点和向量来描述点、直线、平面在空间中的位置?
(1)什么叫点的位置向量?
(2)复习:如何判定两向量共线和三向量共面?
(3)什么叫平面的法向量?平面的法向量是否唯一?
2.设直线l的方向向量是s,平面 的法向量是n. (1)当l // 时,向量u与v的位置如何?运算关系如何?当l ⊥ 时呢?
(2)设直线l和平面 所成的角为 ,对于
第3章 空间向量与立体几何 §3. 2 立体几何中的向量方法(一) -
§3.2 立体几何中的向量方法 (一>
—— 平行与垂直关系的向量证法
知识点一 求平面的法向量
已知平面α经过三点A(1,2,3>,B(2,0,-1>,C(3,-2,0>,试求平面α的一个法向量.
解∵A(1,2,3>,B(2,0,-1>,C(3,-2,0>,
=(1,-2,-4>,错误!=(1,-2,-4>, 设平面α的法向量为n=(x,y,z>. 依题意,应有n·
=0, n·错误!=0.
即错误!,解得错误!.令y=1,则x=2.b5E2RGbCAP ∴平面α的一个法向量为n=(2,1,0>.
【反思感悟】 用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,列出方程组,取其中一组解(非零向量>即可.p1EanqFDPw 在正方体ABCD-A1B1C1D1中,E,F分别是BB1,DC的中点,求证:
是平面A1D1F的法向量.
DXDiTa9E3d 证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则的法向量.
证明
是平面A1D1F
设正方体的棱长为1,建立如图所示的空间直角坐标系,则 A(1,0,0>,E错误!,RTCrpUDGiT =错误!..D1=(0,0,1>,5PCzVD7HxA F错误!,A1(1,0,1>.jLBHr
法向量在立体几何中的应用.
1 法向量在立体几何中的应用
查宝才
(扬州市新华中学,江苏 225002)
向量在数学和物理学中的应用很广泛,在解析几何与立体几何里的应用更为直接,用向量的方法特别便于研究空间里涉及直线和平面的各种问题。将向量引入中学数学后,既丰富了中学数学内容,拓宽了中学生的视野;也为我们解决数学问题带来了一套全新的思想方法——向量法。下面就向量中的一种特殊向量——法向量,结合近几年的高考题,谈谈其在立体几何有关问题中的应用。
1 法向量的定义
1.1 定义1 如果一个非零向量n 与平面α垂直,则称向量n 为平面α的法向量。
1.2 定义2 任意一个三元一次方程:0=+++D Cz By Ax ,222(C B A ++ )0≠都表示空间直角坐标系内的一个平面,其中),,(C B A n =为其一个法向量。]1[ 事实上,设点),,(0000z y x P 是平面α上的一个定点,),,(C B A n =是平面α的法向量,设点),,(z y x P 是平面α上任一点,则总有n P P ⊥0。
∴ 00=?n P P , 故 0),,(),,(000=---?z z y y x x C B A ,
即 0)()()(000=-+-+-z z C y