组合数学引论第二版课后答案
“组合数学引论第二版课后答案”相关的资料有哪些?“组合数学引论第二版课后答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“组合数学引论第二版课后答案”相关范文大全或资料大全,欢迎大家分享。
组合数学引论课后答案
习题二
2.1 证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明:
假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
2.2 任取11个整数,求证其中至少有两个数的差是10的整数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。 2.3 证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 2.3证明:
有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶
组合数学引论课后答案
习题二
2.1 证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明:
假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
2.2 任取11个整数,求证其中至少有两个数的差是10的整数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。 2.3 证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 2.3证明:
有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶
组合数学引论课后答案
习题二
2.1 证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明:
假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
2.2 任取11个整数,求证其中至少有两个数的差是10的整数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。 2.3 证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 2.3证明:
有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶
组合数学引论课后答案(部分)
组合数学引论课后答案
习题一
1.1
任何一组人中都有两个人,它们在该组内认识的人数相等。
1.2
任取11个整数,求证其中至少有两个数,它们的差是10的倍数
1.3
任取n+1个整数,求证其中至少有两个数,它们的差是n的倍数
1.4
在1.1节例4中证明存在连续的一些天,棋手恰好下了k盘棋(k=1,2,…,21).问是
否可能存在连续的一些天,棋手恰好下了22盘棋
1.5
将1.1节例5推广成从1,2,…,2n中任选n+1个数的问题
1.6
从1,2,…,200中任取100个整数,其中之一小于16,那么必有两个数,一个能被另
一个整除
1.7
从1,2,…,200中取100个整数,使得其中任意两个数之间互相不能整除
1.8
任意给定52个数,它们之中有两个数,其和或差是100的倍数
1.9
在坐标平面上任意给定13个整点(即两个坐标均为整数的点),则必有一个以它们
中的三个点为顶点的三角形,其重心也是整点。
1.10 上题中若改成9个整点,问是否有相同的结论?试证明你的结论
1.11 证明:一个有理数的十进制数展开式自某一位后必是循环的。
1.12 证明:对任意的整数N,存在着N的一个倍数,使得它仅有数字0和7组成。(例如,
N=3,我们有3
组合数学课后答案
习题二 证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。2.3证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:
组合数学1章课后习题答案
1.1 题(宗传玉)
从{1,2,??50}中找两个数{a,b},使其满足 (1)|a-b|=5; (2)|a-b|?5; 解:(1):
由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)??(50,45),共有45对。
当a-b=-5时,两数的序列为(1,6),(2,7)??(45,50)也有45对。 所以这样的序列有90对。 (2):
由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;
由上题知当|a-b|=5时 有90对序列。
当|a-b|=1时,两数的序列有(1,2),(3,4),(2,1)(1,2)??(49,50),(50,49)这样的序列有49*2=98对。
当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,
当|a-b|=0时有50对
所以总的序列数=90+98+96+94+92+50=520 1.2题(王星) 解:
(a)可将5个女生看作一个单位,共
组合数学作业答案
第二章作业答案
7. 证明,对任意给定的52个整数,存在两个整数,要么两者的和能被100整除,要么两者的差能被100整除。
证明 用100分别除这52个整数,得到的余数必为0, 1,?, 99这100个数之一。将余数是0的数分为一组,余数是1和99的数分为一组,?,余数是49和51的数分为一组,将余数是50的数分为一组。这样,将这52个整数分成了51组。由鸽巢原理知道,存在两个整数分在了同一组,设它们是a和b。若a和b被100除余数相同,则a?b能被100整除。若a和b被100除余数之和是100,则a?b能被100整除。
11. 一个学生有37天用来准备考试。根据过去的经验,她知道她需要不超过60小时的学习时间。她还希望每天至少学习1小时。证明,无论她如何安排她的学习时间(不过,每天都是整数个小时),都存在连续的若干天,在此期间她恰好学习了13小时。 证明 设从第一天到第i天她共学习了ai小时。因为她每天至少学习1小时,所以
a1,a2,?,a37和a1?13,a2?13,?,a37?13都是严格单调递增序列。因为总的学习时间
不超过
60
小时,所以a37?60,a37?13?73。a1,a2,?,a37,
a1?13,a2?13,?,a37?
李凡长版 组合数学课后习题答案 习题5
第五章 Pólya计数理论
1. 计算(123)(234)(5)(14)(23),并指出它的共轭类.
解:题中出现了5个不同的元素:分别是:1,2,3,4,5。即|Sn|=5。
(123)(234)(5)(14)(23)?12345??12345??12345?
???23145????13425????43215?????????12345??12345????34125????43215?? ?????12345????21435?? ???(12)(34)(5)
(5)(12)(34)的置换的型为1122而Sn中属于1122型的元素个数为个其共轭类为
(5)(14)(23),(5)(13)(24),(1)(23)(45),(1)(24)(35), (1)(25)(34),(2)(13)(45),(2)(14)(35),(2)(15)(34), (3)(12)(45),(3)(14)(25),(3)(15)(24),(4)(12)(35), (4)(13)(25),(4)(15)(24)
2. 设D是n元集合,G是D上的置换群.对于D的子集A和B,如果存在??G,
使得B?{?(a)|a?A},则称A与B是等价的.求G的等价类的个数.
李凡长版 组合数学课后习题答案 习题3
第三章 递推关系
1. 在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限
区域数记为f(n),求f(n)满足的递推关系. 解: f(n)=f(n-1)+2 f(1)=2,f(2)=4 解得f(n)=2n.
2. n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求
f(n)满足的递推关系. 解:设an-1an-2?a1是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1)表示。
an可以有两种情况:
1) 不管上述序列中是否有2,因为an的位置在最左边,因此0 和1均可选;
2)当上述序列中没有1时,2可选; 故满足条件的序列数为
f(n)=2f(n-1)+2n-1 n?1, f(1)=3
解得f(n)=2n-1(2+n).
3. n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足
的递推关系.
解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。则有
h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1) f(n)=h(n)-g(n),f(n)=2f(
组合数学题库答案
填空题
1.将5封信投入3个邮筒,有_____243 _种不同的投法.
2.5个男孩和4个女孩站成一排。如果没有两个女孩相邻,有 43200 方法.
3.22件产品中有2件次品,任取3件,恰有一件次品方式数为__ 380 ______. 4.(x?y)6所有项的系数和是_64_ _.答案:64 5.不定方程x1?x2?x3?2的非负整数解的个数为_ 6 ___.
6.由初始条件f(0)?1,f(1)?1及递推关系f(n?2)?f(n?1)?f(n)确定的数列
{f(n)}(n?0)叫做Fibonacci数列
7.(3x-2y)20 的展开式中x10y10的系数是
c1020310(?2)10.
8.求6的4拆分数P4(6)? 2 .
?5,f(5)?,试求89.已知在Fibonacci数列中,已知f(3)?3,f(4)Fibonacci数f(20)?10946
10.计算P4(12)?
P4(12)??Pk(12)?P1(8)?P2(8)?P3(8)?P4(8)k?14?P1(8)?P2(8)??Pk(5)??Pk(4)?1?4?5?5?15
k?1k?13411