高考数学抛物线常用结论
“高考数学抛物线常用结论”相关的资料有哪些?“高考数学抛物线常用结论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高考数学抛物线常用结论”相关范文大全或资料大全,欢迎大家分享。
与抛物线有关的结论
与抛物线有结论
抛物线中有一些常见、常?y?k(x?p?)用的结论,了解这些结论后在做选择题、填空题2??y2?2px?时可迅速解答相关问题,在做解答题时也可迅速打开思路。
p2结论一:若AB是抛物线y?2px(p?0)的焦点弦(过焦点的弦),且A(x1,y1),B(x2,y2),则:x1x2?,
42y1y2??p2。
证明:因为焦点坐标为F(
22pp,0),当AB不垂直于x轴时,可设直线AB的方程为: y?k(x?), 222y12y22p4p2由得: ky?2py?kp?0 ∴y1y2??p,x1x2?。 ???2p2p4p24当AB⊥x轴时,直线AB方程为x?p2x1x2?。
4p,则y1?p,y2??p,∴y1y2??p2,同上也有:2例:已知直线AB是过抛物线y2?2px(p?0)焦点F,求证:
11?AFBF为定值。
pp,BF?x2?,又22证明:设A(x1,y1),B(x2,y2),由抛物线的定义知:AF?x1?p2。 AF+BF=AB,所以x1+x2=AB-p,且由结论一知:x1x2?4则:1?1?AF?BF?AFBFAF?BFABABAB2 =?(常数) ?222ppppp
抛物线焦点弦的有关结论附答案
[很全]抛物线焦点弦的有关结论
知识点1:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则
p2(1)x1x2?;(2)y1y2??p2
4证明:如图,
(1)若AB的斜率不存在时,
p2p依题意x1?x2?,?x1x2?
24A y x o B F p??若AB的斜率存在时,设为k,则AB:y?k?x??,与y2?2px联立,得
2??p?k2p22?222k?x???2px?kx?k?2px??0
24??2??p2p2?x1x2?. 综上:x1x2?.
44yy(2)?x1?1,x2?2,?y12y22?p4?y1y2??p2,
2p2p但y1y2?0,?y1y2??p2 (2)另证:设AB:x?my?p与y2?2px联立,得y2?2pmy?p2?0,?y1y2??p2 222知识点2:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则(1)AB?x1?x2?p;(2)设直线AB的倾斜角为?,则AB?证明:(1)由抛物线的定义知
ppAF?x1?,BF?x2?,
222p。 sin2?A y ?AB?AF?BF?x1?x2?p (2)若??900
抛物线焦点弦的有关结论附答案
[很全]抛物线焦点弦的有关结论
知识点1:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则
p2(1)x1x2?;(2)y1y2??p2
4证明:如图,
(1)若AB的斜率不存在时,
p2p依题意x1?x2?,?x1x2?
24A y x o B F p??若AB的斜率存在时,设为k,则AB:y?k?x??,与y2?2px联立,得
2??p?k2p22?222k?x???2px?kx?k?2px??0
24??2??p2p2?x1x2?. 综上:x1x2?.
44yy(2)?x1?1,x2?2,?y12y22?p4?y1y2??p2,
2p2p但y1y2?0,?y1y2??p2 (2)另证:设AB:x?my?p与y2?2px联立,得y2?2pmy?p2?0,?y1y2??p2 222知识点2:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则(1)AB?x1?x2?p;(2)设直线AB的倾斜角为?,则AB?证明:(1)由抛物线的定义知
ppAF?x1?,BF?x2?,
222p。 sin2?A y ?AB?AF?BF?x1?x2?p (2)若??900
抛物线的几个常见结论及其应用
抛物线的几个常见结论及其应用
抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。
结论一:若AB是抛物线y2 2px(p 0)的焦点弦(过焦点的弦),且A(x1,y1),B(x2,y2),则:
p2
x1x2 ,y1y2 p2。
4
例:已知直线AB是过抛物线
y2 2px(p 0)焦点F,求证:
11为定值。 AFBF
结论二:(1)若AB是抛物线y2 2px(p 0)的焦点弦,且直线AB的倾斜角为α,则
AB
2P(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)
2sin
最短。
例:已知过抛物线
y2 9x的焦点的弦AB长为12,则直线AB倾斜角为 。AB倾斜角为
2 或。 33
结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
例:已知AB是抛物线相切。
(2)分别过A、B做准线的垂线,垂足为M、N,求证:以MN为直径的圆与直线AB
(1)以AB为直径的圆与抛物线的准线y2 2px(p 0)的过焦点F的弦,求证:
结论四:若抛物线方程为y2 2px(p 0),过(2p,0)的直线与之交于A
(教案)高中数学抛物线 - 高考经典例题
1抛物线的定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线. 2抛物线的图形和性质:
①顶点是焦点向准线所作垂线段中点。
②焦准距:FK?p
③通径:过焦点垂直于轴的弦长为2p。 ④顶点平分焦点到准线的垂线段:OF?OK?p。 2M2PC⑤焦半径为半径的圆:以P为圆心、FP为半径的圆必与准线相切。所有这样的圆过定点F、
N准线是公切线。
KoF⑥焦半径为直径的圆:以焦半径 FP为直径的圆必与过顶点垂直于轴的直线相切。所有这样
M1Q的圆过定点F、过顶点垂直于轴的直线是公切线。
⑦焦点弦为直径的圆:以焦点弦PQ为直径的圆必与准线相切。所有这样的圆的公切线是准线。
3抛物线标准方程的四种形式:
y2?2px,y2??2px,x2?2py,x2??2py。4抛物线y2?2px的图像和性质:
yM2?p?①焦点坐标是:?,0?,
?2?②准线方程是:x??Pp。 2KM1oFQx③焦半径公式:若点P(x0,y0)是抛物线y2?2px上一点,则该点到抛物线的焦点的距离(称为焦半径)是:PF?x0?p, 2pp?x2??x1?x2?p 222④焦点弦长公式:过焦点弦长PQ?x1?2y22
抛物线焦点弦问题
江夏一中2013届文科数学一轮复习专题讲座
抛物线焦点弦问题
抛物线焦点弦问题较多,由焦点引出弦的几何性较集中,现总结如下: 一.弦长问题:
2
例1 斜率为1的直线经过抛物线y 4x的焦点,与抛物线相交AB两点,求线段AB的长。
二.通径最短问题:
2
例2:已知抛物线的标准方程为y 2px,直线l过焦点,和抛物线交与A.B两点,求AB的最小值并
求直线方程。
三.两个定值问题:
2
例3:过抛物线y 2px的焦点的一条直线和抛物线相交,两个焦点的横、纵坐标为x1、x2、y1、y2,
p22
求证:x1y1 ,y1y2 p。
4
四.一个特殊直角问题:
2
例4:过抛物线y 2px(P 0)的焦点F的直线与抛物线交与A、B两点,若点A、B在抛物线的准
线上的射影分别是A1,B1求证: A1FB1 90。
五.线段AB为定长中点到y轴的最小距离问题
2
例5:定长为3的线段AB的两端点在抛物线y x上移动,设点M为线段AB的中点,求点M到y 轴
的最小距离。
六.一条特殊的平行线
例6:过抛物线焦点的一条直线与它交与两点P、Q,经过点P 和抛物线顶点的直线交准线于点M,求证:直线MQ平行于抛物线的对称轴。
七.一个特殊圆
例7:求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切。
八.
高考数学常用结论
附录 高考数学常用结论
1.德摩根公式 CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB. 2.A?B?A?A?B?B?A?B?CUB?CUA?A?CUB?? ?CUA?B?R
3.card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
4.二次函数的解析式的三种形式 ①一般式f(x)?ax2?bx?c(a?0);
2② 顶点式 f(x;?)a(?x?)h(?k③a0零)点式f(x)?a(x?x1)(x?x2)(a?0).
5.设x1?x2??a,b?,x1?x2那么
(x1?x2)?f(x1)?f(x2)??0?f(x1)?f(x2)x1?x2f(x1)?f(x2)x1?x2?0?f(x)在?a,b?上是增函
数;
(x1?x2)?f(x1)?f(x2)??0??0?f(x)在?a,b?上是减函
数.
设函数y?f(x)在某个区间内可导,如果f?(x)?0,则f(x)为增函数;如果f?(x)?0,则f(x)为减函数.
6.函数y?f(x)的图象的对称性:①函
抛物线及其标准方程
篇一:抛物线定义及标准方程
一、 复习预习
复习双曲线的基本性质,标准方程以及方程的求法、应用
二、知识讲解
(一)导出课题
我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.
请大家思考两个问题:
问题1:同学们对抛物线已有了哪些认识?
在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?
问题2:在二次函数中研究的抛物线有什么特征?
在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.
引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.
(二)抛物线的定义
1.回顾
平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?
2.简单实验
如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用
高考抛物线专题做题技巧与方法总结
高考抛物线专题做题技巧与方法总结
知识点梳理:
1.抛物线的标准方程、类型及其几何性质 (p?0): 标准方程 图形 y2?2px ▲y2??2px ▲x2?2py ▲x2??2py ▲yyyyxOxOxOxO 焦点 准线 范围 对称轴 顶点 离心率
2.抛物线的焦半径、焦点弦
F(p,0) 2p 2 F(?p 2 F(0,p) 2 F(0,?p 2p,0) 2p) 2x??x?y??p 2y?x?0,y?R x?0,y?R x?R,y?0 x?R,y?0 x轴 y轴 (0,0) e?1 ①y2?2px(p?0)的焦半径PF?x?P;x2?2py(p?0)的焦半径PF?y?P;
22② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.
p2③ AB为抛物线y?2px的焦点弦,则xAxB? ,yAyB??p2,
42|AB|=xA?xB?p
?x?2pt2?x?2pt3. y?2px的参数方程为?(t为参数),x2?2py的参数方程为?(t2y?2pty?2pt??2为参数). 重难点突破
重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能
通过方程研究抛物线的几
抛物线及其标准方程
第二章 圆锥曲线与方程
2.4.1 抛物线及其标准方程
生活中存在着各种形式的抛物线
我们对抛物线已有了哪些认识?
二次函数是开口向上或向下的抛物线。y
o
x
问题探究: 当|MF|=|MH| ,点M的轨迹是什么?
探 究 ?
H
M
·
C
·F
l
e=1
可以发现,点M随着H运动的过程中,始终|MF|=|MH|,即点M与点F和定直线l的距离相等.点M生成的轨迹是 曲线C的形状.(如图) 我们把这样的一条曲线叫做抛物线.
抛物线的定义:在平面内,与一个定点F 和一条定直线l(l不经过点F) 的距离相等的点的轨迹叫抛 物线. 点F叫抛物线的焦点,H
d M
·
C焦 点
·F
准线
l
直线l 叫抛物线的准线
e=1
d 为 M 到 l 的距离
想一想
如果点F在直线l上,满足条件的点的 轨迹是抛物线吗?
注:若F L,则满足到定点F和定直线L的距离相等的点的 轨迹是过点F且垂直于直线L的一条直线.
1.抛物线的定义 距离相等的 平面内与一个定点F和一条定直线l(不经过点F)_________ 焦点 ,直线l叫做 点的轨迹叫做抛物线.点F叫做抛物线的_____ 准线 . 抛物线的_____ 试一试:在抛物线定义中,若去掉条件“l不经过点F”,点的 轨迹还