数学必修四三角函数公式

“数学必修四三角函数公式”相关的资料有哪些?“数学必修四三角函数公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学必修四三角函数公式”相关范文大全或资料大全,欢迎大家分享。

必修四三角函数例题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

(二)角与角之间的互换

公式组一 公式组二

? cos(???)?cos?cos??sin?sin? sin2??2sin?cos222??co2s??sin??2co2s??1?1?2sin? cos(???)?cos?cos??sin?sin? cossin(???)?sin?cos??cos?sin? tan2??2tan?1?tan?2

sin(???)?sin?cos??cos?sin? sin??2?1?co?s 2tan(???)?tan??tan??1?co?s cos??

1?tan?tan?22?1?cos?sin?1?cos?tan??tan?tan????tan(???)? 21?cos?1?cos?sin?1?tan?tan?公式组三 公式组四 公式组五 1?1?sin??????sin??????sin?cos??2tancos(???)?sin?222 s

必修四三角函数例题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

(二)角与角之间的互换

公式组一 公式组二

? cos(???)?cos?cos??sin?sin? sin2??2sin?cos222??co2s??sin??2co2s??1?1?2sin? cos(???)?cos?cos??sin?sin? cossin(???)?sin?cos??cos?sin? tan2??2tan?1?tan?2

sin(???)?sin?cos??cos?sin? sin??2?1?co?s 2tan(???)?tan??tan??1?co?s cos??

1?tan?tan?22?1?cos?sin?1?cos?tan??tan?tan????tan(???)? 21?cos?1?cos?sin?1?tan?tan?公式组三 公式组四 公式组五 1?1?sin??????sin??????sin?cos??2tancos(???)?sin?222 s

必修四三角函数例题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

(二)角与角之间的互换

公式组一 公式组二

? cos(???)?cos?cos??sin?sin? sin2??2sin?cos222??co2s??sin??2co2s??1?1?2sin? cos(???)?cos?cos??sin?sin? cossin(???)?sin?cos??cos?sin? tan2??2tan?1?tan?2

sin(???)?sin?cos??cos?sin? sin??2?1?co?s 2tan(???)?tan??tan??1?co?s cos??

1?tan?tan?22?1?cos?sin?1?cos?tan??tan?tan????tan(???)? 21?cos?1?cos?sin?1?tan?tan?公式组三 公式组四 公式组五 1?1?sin??????sin??????sin?cos??2tancos(???)?sin?222 s

三角函数三角函数的诱导公式

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三角函数的诱导公式(第一课时)

(一)复习提问,引入新课 思考 如何求 cos150 ?150 y

30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.

O

(二)新课讲授由三角函数的定义我们可以知道:

终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)

(公式一)

我们来研究角 与 的三角函数值之间的关系 y

因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos

M

O

P' (x, y)

sin( ) sin cos( ) cos tan( ) tan

(公式二)

思考 P '

高中数学必修四三角函数课后练习WORD版

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

1.1

任意角和弧度制 1.1.1 任意角

练习

1.口答:锐角是第几象限?第一象限的角一定是锐角吗?在分别就直角、钝角来回答这两个问题.

2.口答:今天是星期三,那么7k(k?Z)天后的那一天是星期几?7k(k?Z)天前的那一天是星期几?100天后的那一天是星期几?

3.已知角的顶点与直角坐标系的原点重合,始边与x轴的负半轴重合,作出下列各角,并指出它们是第几象限角: (1)420°;(2)-750°;(3)855°;(4)-510°.

4.在0°~360°范围内,找出与下列各角终边相同的角,并指出他们是第几象限角: (1)-54°18′; (2)359°8′; (3)-1190°30′.

5.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来:

(1)1303°18′; (2)-225°.

1.1.2 弧度制

练习

1. 把下列角度化为弧度:

(1)22°30′; (2)-210°; (3)1200°. 2.把下列弧度化为角度: (1)

??? ; (2)?; (3)

312103.用弧度表示:

(1)终边在x轴上的角的集合; (2)终边在y轴上的角的集合.

4.利用计算机比较下列各对值的大

高中必修4数学中的三角函数公式

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

诱导公式

sin (α+k·360°)=sinα(k∈Z) cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z) 课改后COT SEC CSC不做要求的

sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanα sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα

sin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanα sin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90

三角函数公式大全

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三角函数各类公式

Trigonometric

1.诱导公式

sin(-a) = - sin(a)

cos(-a) = cos(a)

sin(π/2 - a) = cos(a)

cos(π/2 - a) = sin(a)

sin(π/2 + a) = cos(a)

cos(π/2 + a) = - sin(a)

sin(π - a) = sin(a)

cos(π - a) = - cos(a)

sin(π + a) = - sin(a)

cos(π + a) = - cos(a)

2.两角和与差的三角函数

sin(a + b) = sin(a)cos(b) + cos(α)sin(b)

cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]

三角函数各类公式

tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]

3.和差化积公式

sin(a) + s

三角函数公式大全

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三角函数公式大全

几个一定要掌握的角(其中还有120,135,150根据公式自行推出)

sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3

几个会有几率考到角度(这些是根据下面的公式推出来的)

sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4

cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)

正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。)

余弦定理:在△ABC中

高中数学必修4三角函数公式大全

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin

三角函数公式总结

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三角函数公式总结

一、三角函数基本知识

1. 几种终边在特殊位置时对应角的集合为

角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、

??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。

2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。

2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。

2若α终边在第一象限则3. 三角函数基本关系式

(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则

sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式

sin??cos??1