九年级上册第一章特殊的平行四边形
“九年级上册第一章特殊的平行四边形”相关的资料有哪些?“九年级上册第一章特殊的平行四边形”相关的范文有哪些?怎么写?下面是小编为您精心整理的“九年级上册第一章特殊的平行四边形”相关范文大全或资料大全,欢迎大家分享。
第一章特殊的平行四边形教案
第1章特殊平行四边形与梯形
目录
1、菱形(2课时) 2、矩形(2课时) 3、正方形(1课时) 4、章节复习(2课时) 5、测验(2课时) 6、讲试卷(2课时)
1.1菱形(1)
【教学目标】
1.经历菱形的概念、性质的发现过程 2.掌握菱形的概念
3.掌握菱形的性质定理 “菱形的四条边都相等”
4.掌握菱形的性质定理 “菱形的对角线互相垂直,并且每条对角线平分一组对角” 5.探索菱形的对称性
【教学重点、难点】
重点:菱形的性质.
难点:菱形的轴对称需要用折叠和推理相结合的方法,是本节的教学难点.
【教学过程】
一. 引入: 用多媒体显示下面的图形 观察以下由火柴棒摆成的图形
议一议: (1)三个图形都是平行四边形吗?
(2) 与图一相比,图二与图三有什么共同的特点?
目的是让学生经历菱形的概念,性质的发现过程,并让学生注意以下几点: (1) 要使学生明确图二、图三都为平行四边形
(2) 引导学生找出图二、图三与图一在边方面的差异 二. 新课: 把一组邻边相等的平行四边形叫做菱形.
再用多媒体教科书中有关菱形的美丽图案,让学生感受菱形具有工整,匀称,美观等许多优点. 菱形也是特殊的平行四边形,所以它具有一般平行
平行四边形与特殊的平行四边形练习题勿删
平行四边形与特殊的平行四边形练习题
一、选择题
1.下列命题中,正确的是( )
A.平行四边形的对角线相等 B.矩形的对角线互相垂直 C.菱形的对角线互相垂直且平分 D.梯形的对角线相等
2.下列说法中,正确的是( ) A . 同位角相等
C . 四条边相等的四边形是菱形
∠1=∠2 A.
4.在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( ) 9 A. 24 A.
B. 16
C. 4
D. 2
第3题
这个四边形是平行四边形的是
A.AB//DC,AD//BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB//DC,AD=BC
10.如图2,点E是平行四边形ABCD的边CD的中点,AD、BE的延长线相交于点F,
DF=3,DE=2,则平行四边形ABCD的周长为
A. 5 B. 7 C.10
D. 14
B. 对角线相等的四边形是平行四边形 D. 矩形的对角线一定互相垂直
3.如图,在平行四边形ABCD中,下列结论中错误的是( )
B. ∠BAD=∠BCD
C. AB=CD
平行四边形
19.2 平行四边形(第一课时)
教学目标:
知识与技能:
1、理解并掌握平行四边形的定义;
2、掌握平行四边形的性质定理1及性质定理2; 3、理解两条平行线的距离的概念; 4、培养学生综合运用知识的能力
过程与方法:经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理
的能力。
情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际
应用价值。
重点、难点:
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 难点:运用平行四边形的性质进行有关的论证和计算.
教具准备:图片、三角板 课时安排:一课时 教学过程:
一、导入新课
引入:
等,都是平行四边形,平行四边形有哪些性质呢?
什么是平行四边形? 平行四边形的定义:
(1)定义: 两组对边分别平行的四边形叫做平行四边形。
在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本
(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形
(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”
九年级数学上册特殊平行四边形说课稿
作品编号:0115230988859532558954500001
学校:秘强市景秀镇赛班家屯小学*
教师:丽景春*
班级:凤凰队参班*
《特殊平行四边形》说课稿
尊敬的各位评委老师:
下午好!今天我说课的内容是:北师大版数学教材九年级上册第一章《特殊平行四边形》第二节第一课时。下面我将从教材分析、教法学法分析、教学程序和设计说明四个方面谈一下我对本节课的理解。
一、教材分析
1.教材所处的地位和作用
本节课主要研究的是矩形的概念、性质和判定。是在学生已经掌握三角形、平行四边形的相关知识,及图形变换(对称、平移、旋转)等内容的基础上进行的,是本章的学习重点。同时矩形不仅是特殊的平行四边形,又是后面学习正方形的基础,因此,本节知识具有承上启下的作用。
2.学情分析
初三的学生思维活跃,求知欲强,已经具备一定的观察、猜想、归纳和推理能力。此外,学生在小学已学过有关长方形的相关知识,且掌握了探究平行四边形定义、性质和判定的一般思路和方法。这些都为本节课的学习打下了良好的基础。
3.目标分析
根据以上教材分析,结合课程标准,我制定了以下四维教学目标:知识技能:掌握矩形的概念、性质和判定,理解矩形与平行四边形的区别和联系.
数学思考:经历观察、探究、实验、猜想、说理验证等数学活动
九年级上册数学第一章特殊平行四边形检测卷(北师大含答案)
★精品文档★
九年级上册数学第一章特殊平行四边形检
测卷(北师大含答案)
一、选择题(每小题3分,共45分) 1.下列四边形中,对角线互相垂直平分的是() A.平行四边形、菱形B.矩形、菱形 c.矩形、正方形D.菱形、正方形
2.在四边形ABcD中,AB=Bc=cD=DA,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是() A.Ac⊥BDB.AB∥cDc.∠A=90°D.∠A=∠c 3.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是() A.20°B.40°c.80°D.100°
4.如图,在矩形ABcD中,对角线Ac,BD交于点o,下列说法错误的是()
A.AB∥DcB.Ac=BDc.Ac⊥BDD.oA=oc 第4题图 第5题图 第6题图
5.如图,点P是菱形ABcD对角线BD上一点,PE⊥AB于点E,且PE=2.连接Pc,若菱形的周长为24.则△BcP的面积为()
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
1 / 9
★精品文档★
A.4B.6c.8D.12
特殊平行四边形拓展提高题
特殊的平行四边形拓展提高题精选(1)
1.在一张边长为1的正方形纸片ABCD中,对折的折痕为EF,再将点C折到折痕EF上,落在点N的位置,折痕为BM,则EN的长为 。
解: ?正方形ABCD边长为1,EF为折痕,?在Rt?BFE中,BF?1232,NF?1?()?222123
EN?EF?FN?1?
2.如图,将边长为3的正方形ABCD,绕点C按顺时针方向旋转30度后,得到正文形EFCG,EF交AD于点H,则DH长是多少? 解:如图,连接CH,∵正方形ABCD绕点C按顺时针方向旋转30°,∴∠BCF=30°,则∠DCF=60°, 在Rt△CDH和Rt△CFH中,CF=CD,HC=HC∴Rt△CDH≌Rt△CFH(HL), ∴∠DCH=∠FCH=∠DCF=30°,∴在Rt△CDH中,设HD=x,则HC=2x,得:(2x)?x?3?x?2223即DH?3 3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠EAB,则∠EAC的度数为 。 解:∵四边形ABCD是矩形,AC、BD是矩形的对角线, ∴OA=OB,∴∠BAC=∠ABD,
∵∠DAE=3∠BAE,∠DAE+
特殊的平行四边形(提高)知识讲解
特殊的平行四边形(提高)
【学习目标】
1. 理解矩形、菱形、正方形的概念.
2. 掌握矩形、菱形、正方形的性质定理与判定定理.
3. 了解平行四边形、矩形及菱形与正方形的概念之间的从属关系. 【要点梳理】
要点一、矩形、菱形、正方形的定义
有一个角是直角的平行四边形叫做矩形. 有一组邻边相等的平行四边形叫做菱形.
有一组邻边相等并且有一个内角是直角的平行四边形 叫做正方形. 要点二、矩形、菱形、正方形的性质
矩形的性质:1.矩形具有平行四边形的所有性质;
2.矩形的对角线相等;
3.矩形的四个角都是直角;
4.矩形是轴对称图形,它有两条对称轴.
菱形的性质:1.菱形的四条边都相等;
2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; 3.菱形是轴对称图形,它有两条对称轴.
正方形的性质:1.正方形四个角都是直角,四条边都相等.
2.正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.
要点三、矩形、菱形、正方形的判定
矩形的判定:1. 有三个角是直角的四边形是矩形.
2. 对角线相等的平行四边形是矩形.
3. 定义:有一个角是直
特殊平行四边形练习题
特殊平行四边形复习练习 姓名
一、基础知识点复习: (一)矩形:
1、矩形的定义:__________________________的平行四边形叫矩形.
2、矩形的性质:①.矩形的四个角都是______;矩形的对角线__________________________. ②.矩形既是 对称图形,又是 图形,它有 条对称轴. 3、矩形的判定:①.有_____个是直角的四边形是矩形.
②.对角线____________________________的平行四边形是矩形. ③.对角线________________________________的四边形是矩形.
4、练习:①已知:矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,
则矩形对角线AC长为______cm. ②四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是( ) A.AO=CO,BO=DO B.AO=BO=CO=DO
C.AB=BC,AO=CO D.AO=CO,BO=DO
特殊的平行四边形复习导学案
特殊平行四边形复习导学案
一、 学习目标
1、 自主复习教材94-101页,10分钟之后能够口述所有相关性质、判定、定理;
2、 能够运用相关性质、定理准确的判断特殊的四边形
二、 学习过程
(一) 性质、判定填空
1
、
2、矩形性质:a、矩形对边______,邻边________;b、矩形的四个角都是___________;
c、矩形的对角线_________且互相_________;
d、对称性:矩形既是______图形又是________图形
矩形判定:a、有一个角是_______的平行四边形是矩形;b、三个角是________的四边形是
矩形;c、对角线_____的平行四边行是矩形;d、对角线______且______的四
边形是矩形。
3、菱形性质:a、菱形四边_____;b、对角_____,邻角_______;c、对角线___________,且平
分______;d、对称性:菱形是______图形。
菱形判定:a、邻边_____的平行四边形是菱形;b、对角线_________的平行四边形是菱形;c、
对角线_________的四边形是菱形;d、四边______的四边形是菱形。
4、正方形性质:a、四边_______且邻边______;b、四个角都是_______
完整版九年级上册-特殊的平行四边形知识点
九年级上册-特殊的平行四边形知识点总结
一、平行四边形
1、定义:两组对边分别平行的四边形叫做平行四边形。
2、表示:字母按顺序书写。
3、性质:①边:对边平行且相等; ②角:对角相等; ③对角线:互相平分
4、判定:①以定义证明:两组对边平行的四边形是平行四边形;
②对角线互相平分的四边形是平行四边形;
③两组对边分别相等的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
二、矩形
1、定义:有一个角是直角的平行四边形。
2、性质:①边:对边平行且相等(具有平行四边形的一切性质); ②角:四个角相等,都是直角;
③对角线:相等,互相平分。
3、判定:①以定义证明:有一个角是直角的平行四边形;
②有三个角是90°的四边形;
③对角线相等的平行四边形;
④对角线互相平分且相等的四边形。
三、菱形
1、定义:有一组邻边相等的平行四边形叫做菱形。
2、性质:①边:四条边相等;
②角:对角相等(具有平行四边形的一切性质);
③对角线:互相平分且垂直,并且每一条对角线平分一组对角。 ④菱形的面积等于对角线乘积的一半。
3、判定:①以定义证明:有一组邻边相等的平行四边形叫做菱形;