teoc保护基团
“teoc保护基团”相关的资料有哪些?“teoc保护基团”相关的范文有哪些?怎么写?下面是小编为您精心整理的“teoc保护基团”相关范文大全或资料大全,欢迎大家分享。
有机合成中的+保护基团
第七章 保护基团复杂的有机化合物可能含有多种官能团,在合成的 复杂的有机化合物可能含有多种官能团, 过程中,若能够利用高选择性的试剂, 过程中 , 若能够利用高选择性的试剂 , 只对某个特定的 部位或官能团进行反应,当然是最佳的策略。 部位或官能团进行反应,当然是最佳的策略。 但是在实际的过程中往往是无法找到适当的试剂, 能够满足选择性的要求。 这个时候, 可先将某些基团保 这个时候 ,
护起来,不使其作用,而只留特定要作用的官能团进行 护起来, 不使其作用, 反应;然后再将保护基团除去,以便进行下一个步骤, 反应 ; 然后再将保护基团除去 , 以便进行下一个步骤 , 这种保护-除保护 (protection-deprotection)的方法在有 这种保护- 机合成上应用极广,其缺点是增加额外的步骤,会使产 机合成上应用极广 ,率降低。为了弥补这种缺点,在引入或除去保护基团时, 应以高选择性及高产率的方法优先。
第七章 保护基团总的说来,保护基应满足下列三点要求: 总的说来,保护基应满足下列三点要求: 1. 它容易引入所要保护的分子(温和条件); 它容易引入所要保护的分子(温和条件) 2. 它与被保护基形成的结构能够经受住所要发生 的反应的条件;
第六章:保护基团
有机物合成过程中的官能团的保护问题
保护基团与 第六章 保护基团与合成策略一 保护基团 复杂的有机化合物可能含有多种官能团, 复杂的有机化合物可能含有多种官能团 , 在合成的 过程中,若能够利用高选择性的试剂, 过程中 , 若能够利用高选择性的试剂 , 只对某个特定的 部位或官能团进行反应,当然是最佳的策略。 部位或官能团进行反应,当然是最佳的策略。 但是在实际的过程中常常无法找到适当的试剂,能 但是在实际的过程中常常无法找到适当的试剂, 够满足选择性的要求。 这个时候 , 够满足选择性的要求 。 这个时候, 可先将某些基团保护
起来,不使其作用,而只留特定要作用的官能团进行反 起来 , 不使其作用 , 应 ; 然后再将保护基团除去,以便进行下一个步骤,这 然后再将保护基团除去 , 以便进行下一个步骤 , 种保护-除保护 (protection-deprotection)的方法在有机 种保护- 合成上应用极广。 合成上应用极广。其缺点是增加额外的步骤, 会使产率降低 。 为了弥 缺点是增加额外的步骤,会使产率降低。 缺点是增加额外的步骤 补这种缺点,在引入或除去保护基团时,应以高选择性 及高产率的方法优先。
有机物合成过程中的官能团的保护问题
总的说
第六章:保护基团
有机物合成过程中的官能团的保护问题
保护基团与 第六章 保护基团与合成策略一 保护基团 复杂的有机化合物可能含有多种官能团, 复杂的有机化合物可能含有多种官能团 , 在合成的 过程中,若能够利用高选择性的试剂, 过程中 , 若能够利用高选择性的试剂 , 只对某个特定的 部位或官能团进行反应,当然是最佳的策略。 部位或官能团进行反应,当然是最佳的策略。 但是在实际的过程中常常无法找到适当的试剂,能 但是在实际的过程中常常无法找到适当的试剂, 够满足选择性的要求。 这个时候 , 够满足选择性的要求 。 这个时候, 可先将某些基团保护
起来,不使其作用,而只留特定要作用的官能团进行反 起来 , 不使其作用 , 应 ; 然后再将保护基团除去,以便进行下一个步骤,这 然后再将保护基团除去 , 以便进行下一个步骤 , 种保护-除保护 (protection-deprotection)的方法在有机 种保护- 合成上应用极广。 合成上应用极广。其缺点是增加额外的步骤, 会使产率降低 。 为了弥 缺点是增加额外的步骤,会使产率降低。 缺点是增加额外的步骤 补这种缺点,在引入或除去保护基团时,应以高选择性 及高产率的方法优先。
有机物合成过程中的官能团的保护问题
总的说
主要基团的红外特征吸收峰
.
.
主要基团的红外特征吸收峰
基团振动类型波数(cm-1)波长(μm)强
度
备注
一、烷烃类CH伸
CH伸(反称)
CH伸(对称)
CH弯(面内)
C-C伸3000~2843
2972~2880
2882~2843
1490~1350
1250~1140
3.33~
3.52
3.37~
3.47
3.49~
3.52
6.71~
7.41
8.00~
8.77
中、
强
中、
强
中、
强
分为反称与对
称
二、烯烃类CH伸
C=C伸
CH弯(面内)
CH弯(面外)
单取代
双取代
顺式
反式3100~3000
1695~1630
1430~1290
1010~650
995~985
910~905
730~650
980~965
3.23~
3.33
5.90~
6.13
7.00~
7.75
9.90~
15.4
10.05~10.15
10.99~11.05
13.70~15.38
10.20~10.36
中、
弱
中
强
强
强
强
强
C=C=C为
2000~1925
cm-1
三、炔烃类CH伸
C≡C 伸
CH弯(面内)
CH弯(面外)
~3300
2270~2100
1260~1245
645~615
~3.03
4.41~
4.76
7.94~
8.03
15.50~16.25
中
中
强
四、取代苯类CH伸
泛频峰
骨架振动(
C
C=
ν)
CH弯(面内)
CH弯(面外)3100~3000
2000~1
主要基团的红外特征吸收峰.
主要基团的红外特征吸收峰
9.90
2.95
9.09
7.14
红外波谱
分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。
常见官能团的红外吸收频率
整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。
通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。
1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重要。
红外各基团特征峰对照表
红外各基团特征峰对照表
一、红外吸收光谱中的重要区段:
1) O-H、N-H伸缩振动区(3750~3000 cm-1)
2) 不饱和碳上的C-H伸缩振动区(3300~3000 cm-1)
不饱和碳(三键和双键、苯环)上的C-H的伸缩振动在3300~3000 cm-1区域中出现不同的吸收峰。
3) C-H伸缩振动区(3000~2700 cm-1)
饱和碳上的C-H伸缩振动(包括醛基上的C-H)
4) 叁键和累积双键区(2400~2100 cm-1)
波数在2400~2100 cm-1区域内的谱带较少。
5) 羰基的伸缩振动区(1900~1650 cm-1)
羰基的吸收最常见出现的区域为1755~1670 cm-1。由于羰基的电偶极矩较大,一般吸收都很强烈,常成为IR光谱中的第一强峰。
6) 双键伸缩振动区(1690~1500 cm-1)
该区主要包括C=C,C=N,N=N,N=O等的伸缩振动以及苯环的骨架振动(σ
)。
C=C 7) X-H面内弯曲振动及X-Y伸缩振动区(1475~1000 cm-1)
这个区域主要包括C-H面内弯曲振动, C-O、C-X(卤素)等伸缩振动, 以及C-C 单键骨架振动等。该区域是指纹区的一部分。
8) C-H面外弯曲振动区(1000~650
常见有机物及基团的缩写
. %
%de 非对映体过量百分比(不对称合成术语)
%ee 对映体过量百分比(不对称合成术语)
A
A/MMA 丙烯腈/甲基丙烯酸甲酯共聚物
AA 丙烯酸
AAS 丙烯酸酯-丙烯酸酯-苯乙烯共聚物
ABFN 偶氮(二)甲酰胺
ABN 偶氮(二)异丁腈
ABPS 壬基苯氧基丙烷磺酸钠
Ac 乙酰基
acac 乙酰丙酮基
AIBN 2,2'-二偶氮异丁腈
aq. 水溶液
B
BAA 正丁醛苯胺缩合物
BAC 碱式氯化铝
BACN 新型阻燃剂
BAD 双水杨酸双酚A酯
BAL 2,3-巯(基)丙醇
9-BBN 9-硼二环[3.3.1]壬烷
BBP 邻苯二甲酸丁苄酯
. BBS N-叔丁基-乙-苯并噻唑次磺酰胺
BC 叶酸
BCD β-环糊精
BCG 苯顺二醇
BCNU 氯化亚硝脲
BD 丁二烯
BE 丙烯酸乳胶外墙涂料
BEE 苯偶姻乙醚
BFRM 硼纤维增强塑料
BG 丁二醇
BGE 反应性稀释剂
BHA 特丁基-4羟基茴香醚
BHT 二丁基羟基甲苯
BINAP (2R,3S)-2.2'-二苯膦-1.1'-联萘,亦简称为联二萘磷,BINAP是日本名古屋大学的Noyori(2001年诺贝尔奖)发展的一类不对称合成催化剂
BL 丁内酯
BLE 丙酮-二苯胺高温缩合物
BLP 粉末涂料流平剂
BMA 甲基丙烯酸丁酯
BMC 团状
红外光谱各基团出峰位置和特征
基 团 -CH3 振动形式 ?asCH ??sCH ??asCH ??sCH ?吸收峰位(cm-1) 2692±10 2872±10 1450±10 1380~1370 2926±5 2853±10 1465±20 2890±10 ~1340 ~720 1650~1640 990 和910 730~675 970~960 强 度 S S M S S S m w w w 饱和烃基 -CH2- ?asCH??sCH??CH??sCH??CH ?CH2的?CH C-H伸缩振动 =C-H弯曲振动 =C-H弯曲振动 =C-H弯曲振动 =C-H弯曲振动 =C-H弯曲振动 伸缩振动 伸缩振动 -CH- -(CH2)n- C=C RCH=CH2 RCH=CHR′ (顺式) RCH=CHR′ (反式) R2C=CH2 R2C=CHR C=C =C-H 不饱和烃基 880 840~800 2250~2100 3300 m~s m s s s s s s m s s s 苯 ?asC=C??CH??CH??CH??CH??CH??CH??CH??CH?1650~1
红外光谱各基团出峰位置和特征
基 团 -CH3 振动形式 ?asCH ??sCH ??asCH ??sCH ?吸收峰位(cm-1) 2692±10 2872±10 1450±10 1380~1370 2926±5 2853±10 1465±20 2890±10 ~1340 ~720 1650~1640 990 和910 730~675 970~960 强 度 S S M S S S m w w w 饱和烃基 -CH2- ?asCH??sCH??CH??sCH??CH ?CH2的?CH C-H伸缩振动 =C-H弯曲振动 =C-H弯曲振动 =C-H弯曲振动 =C-H弯曲振动 =C-H弯曲振动 伸缩振动 伸缩振动 -CH- -(CH2)n- C=C RCH=CH2 RCH=CHR′ (顺式) RCH=CHR′ (反式) R2C=CH2 R2C=CHR C=C =C-H 不饱和烃基 880 840~800 2250~2100 3300 m~s m s s s s s s m s s s 苯 ?asC=C??CH??CH??CH??CH??CH??CH??CH??CH?1650~1
N O 保护 脱保护
苄醚主要是氢化去保护,胺对钯催化剂的慢性毒化。用化学方法进行脱苄基
苄醚类主要有苄基,对甲氧苄基及三苯甲基醚
苄基醚保护与去保护事例
对甲氧基苄基醚
一般而言,对甲氧基苄醚在合成中更为常用,羟基上对甲氧基苄基的方法和苄基类似,但脱除除了氢解的方法外,还可以氧化除去
氨基保护基
2,4-二甲氧基苄基(DMB)是较稳定的氨基保护基之一, 对催化氢解较Cbz、PMB和Bn稳定,故用H2/8%Pd-C/EtOH处理,则可除去Bn,而保留N-DMB
在设计合成路线时,2,4-二甲氧基苄胺常被用为氨的等价物加以使用。
DMB容易用酸脱去,如用TFA, TosOH或HCl的有机溶液在0℃或室温即可顺利除去。采用TFA/i-Pr3SiH/CH2Cl2时,N-Fmoc可以稳定不动。其他如DDQ/CH2Cl2也能很方便的脱去DMB,而叔丁酯和N-Boc可以不受影响。
FF30%TFA/CH2Cl2
OSNODMBor1NHCl/THF87%OSNHOOrg.Lett.,2004,6(23),4285对甲氧基苄基(PMB)
在Bn存在下,可用CAN或DDQ氧化选择脱PMB;同样,在Boc和叔丁酯存在下,可用CAN氧化选