高中三角函数知识点总结
“高中三角函数知识点总结”相关的资料有哪些?“高中三角函数知识点总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中三角函数知识点总结”相关范文大全或资料大全,欢迎大家分享。
高中三角函数知识点及习题汇总
任意角的三角函数及诱导公式
一.课标要求:
1.任意角、弧度:了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数:借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; 二.命题走向
从近几年的新课程高考考卷来看,试题内容主要考察三角函数的图形与性质,但解决这类问题的基础是任意角的三角函数及诱导公式,在处理一些复杂的三角问题时,同角的三角函数的基本关系式是解决问题的关键。 三.知识要点精讲
1.任意角的概念
我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.终边相同的角、区间角与象限角
角的顶点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角(或轴上角),具体读作x的非负、非正半轴及y的非负、非正半轴及。
终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2kπ(k∈Z),即β∈{β|β=2kπ+α,k∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。
区间角是介于两个角之间的所有角
初中三角函数知识点总结(中考复习)
黄冈教育@张家界教学中心 内部使用
锐角三角函数知识点总结
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 a2?b2?c2 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
定 义 表达式 取值范围 关 系 正?A的对边0?sinA?1 a sinA? sinA?c弦 (∠A为锐角) 斜边余?A的邻边0?cosA?1 b cosA? cosA?c弦 (∠A为锐角) 斜边正?A的对边a tanA? tanA?b切 ?A的邻边余?A的邻边b cotA? cotA?a切 ?A的对边sinA?cosB cosA?sinB sin2A?cos2A?1 tanA?cotB cotA?tanB 1(倒数) tanA?cotA tanA?cotA?1 B tanA?0 (∠A为锐角) cotA?0 (∠A为锐角) 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
sinA?cosB由?A??B?90?cosA?sinB
得?B?90???A
三角函数知识点总结
高一必修四:三角函数
一 任意角的概念与弧度制
(一)角的概念的推广
1、角概念的推广:
在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角。按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边。射线旋转停止时对应的边叫角的终边。
2、特殊命名的角的定义:
(1)正角,负角,零角 :见上文。
(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角等
(3)轴线角:角的终边落在坐标轴上的角
终边在x 轴上的角的集合: {}Z k k ∈?=,180|οββ
终边在y 轴上的角的集合: {}Z k k ∈+?=,90180|οοββ
终边在坐标轴上的角的集合:{}Z k k ∈?=,90|οββ
(4)终边相同的角:与α终边相同的角2x k απ=+
(5)与α终边反向的角: (21)x k απ=++
终边在直线y =x 上的角的集合:{}Z k k ∈+?=,45180|οοββ
终边在直线x y -=上的角的集合:{}Z k k ∈-?=,45180|οοββ
(6)若
三角函数知识点复习总结
1.角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称
为始边,终止位置称为终边。
2.象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角
的终边在坐标轴上,就认为这个角不属于任何象限。
3.终边相同的角的表示:
(1)
终边与
终边相同(
的终边在终边所在射线上)
,注意:相等的角的终边一定相同,终边相同的角不一定相等。
如与角
的终边相同,且绝对值最小的角的度数是___,合___弧
度。(答:;
)
(2)终边与终边共线(的终边在终边所在直线上)
。
(3)终边与终边关于轴对称
。
(4)终边与终边关于轴对称
。
(5)终边与终边关于原点对称
。
(6)终边在轴上的角可表示为:;终边在轴上的角可表
示为:;终边在坐标轴上的角可表示为:
。
如的终边与的终边关于直线对称,则=____________。(答:
)
4.
与
的终边关系:由“两等分各象限、一二三四”确定。
是第二象限角,则
是第_____象限角(答:一、三)
5.弧
三角函数复习(知识点)
i. 三角函数
1. 角?的终边与角??2k?,k?Z的终边相同.
例题:.与?2002终边相同的最小正角是_______________。 2.弧度制与角度制的互化:1rad(弧度)?3. 弧长公式:半径为R的圆的圆心角
0180?度?57.3?.
??0???2??所对弧的长l???R.
4. 扇形面积公式:设R是圆的半径,l是弧长,??0???2??为圆心角,S是扇形的面积;则S?11l?R???R2. 222例题:.设扇形的周长为8cm,面积为4cm,则扇形的圆心角的弧度数是 。
6. 常用三角不等式:
?(1)若x?(0,),则sinx?2x?tanx;
?(2)若x?(0,),则1?sinx?cosx?22;
7. 三角函数的定义:设?为任意角,?的终边上任取一点P(x,y),则P点到
y 22r?x?y?0,则 原点的距离
?O? x
ysin??; cos??x; tan??y(x?0).
rrxcosx?sinx例题:.已知tanx?2,求的值。
cosx?sinx8. 三角函数在各个象限的符号判断:
例题:1.若cos???x=_____。
3,且?的终边过点P(x,2),则?是第_____象限角,29.同角
高中三角函数公式表
RT
高中三角函数公式表
发布时间:2012-8-22 浏览人数:347 本文编辑:高考学习
注: ⑴对与以上高中数学三角函数公式我们务必要知道其推导思路,从而清晰地“看出”三角函数之间的联系,了解三角函数公式的变化形式.如这个三角函数公式
从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
RT
高中三角函数公式总表
三角公式总表
bca=== 2R(RsinAsinBsinC
nπRn R2112
⒈L弧长=R=180 S扇=LR=R =
36022
⒉正弦定理:
为三角形外接圆半径)
⒊余弦定理:a2=b2+c2-2bccosA b2=a2+c2-2accosB
c=a+b
2
2
2
b2 c2 a2
-2abcosC cosA
2bc
⒋S⊿=1a ha=1absinC=1bcsinA=1acsinB=abc=2R2sinAsinBsinC
2
2
2
2
4R
a2sinBsinCb2sinAsinCc2sinAsinB====pr=p(p a)(p b)(p c)
2sinB2sinC2sinA
(其中p 1(a b c), r为三角形内切圆半径)
2
⒌同角关系:
ysin
⑴商的关系:①tg ==
x
③sin ⑤cos
cos
=sin sec ②ctg
xcos
cos csc ysin
r1y
tg csc cos tg ④sec
xcos r
r1x
ctg sec sin ctg ⑥csc
ysin r
⑵倒数关系:sin csc cos sec tg ctg 1 ⑶平方关系:si
高中三角函数公式大全
高中三角函数公式大全
2009年07月12日 星期日 19:27
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =
tanA?tanB1-tanAtanBtanA?tanB1?tanAtanBcotAcotB-1cotB?cotAcotAcotB?1cotB?cotA
cot(A+B) =cot(A-B) =倍角公式 tan2A =
2tanA1?tanA2
Sin2A=2SinA?CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(半角公式 sin(
A2A2A2A2A2?3+a)·tan(
?3-a)
)=
1?cosA21?cosA21?cosA1?cosA1?cosA1?cosA1?cosAsinA
cos()=
高中三角函数公式总表
三角公式总表
bca=== 2R(RsinAsinBsinC
nπR112n R2
⒈L弧长=R=180 S扇=LR=R=
22360
⒉正弦定理:
为三角形外接圆半径)
⒊余弦定理:a2=b2+c2-2bccosA b2=a2+c2-2accosB
c=a+b
2
2
2
b2 c2 a2-2abcosC cosA
2bc
2
4R
⒋S⊿=1a ha=1absinC=1bcsinA=1acsinB=abc=2R2sinAsinBsinC
2
2
2
a2sinBsinCb2sinAsinCc2sinAsinB====pr=p(p a)(p b)(p c)
2sinB2sinC2sinA
(其中p 1(a b c), r为三角形内切圆半径)
2
⒌同角关系:
ysin
⑴商的关系:①tg ==
x
③sin ⑤cos
cos
=sin sec ②ctg
xcos
cos csc ysin
r1y
tg csc cos tg ④sec
xcos r
xr1
sin ctg ⑥csc ctg sec rysin
⑵倒数关系:sin csc cos sec tg ctg 1 ⑶平方关系:sin