利用excel求解线性规划问题的实验目的

“利用excel求解线性规划问题的实验目的”相关的资料有哪些?“利用excel求解线性规划问题的实验目的”相关的范文有哪些?怎么写?下面是小编为您精心整理的“利用excel求解线性规划问题的实验目的”相关范文大全或资料大全,欢迎大家分享。

利用Excel求解线性规划问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

利用Excel求解线性规划问题

线性规划问题的求解有很多方法,也有很多工具。比如常用的Matlab、Lingo,记得参加数学建模的时候就是用的Lingo解决线性规划问题的。本文主要讲解如何使用Excel求解线性规划问题,Excel本身是没有计算线性规划问题能力的,因此我们首先要加载相应的宏定义。一、加载宏定义(不同版本的加载方式有所不同): Excel 2003:单击“工具”菜单,然后单击“加载宏”,选择“规划求解”点击确定。 Excel 2007:方法一:用快捷键。先按Alt+T,再按I键,即可打开加载宏对话框。方法二:单击“Office按钮→Excel 选项→加载项”,确保“管理”右侧下拉列表中的选项是“Excel 加载项”,单击“转到”按钮即可。 Excel 2010:直接在功能区中选择“开发工具”选项卡,在“加载项”组中单击“加载项”命令,选择“规划求解”点击确定。注意:如果功能区中没有“开发工具”选项卡,可以通过自定义功能区来显示“开发工具”选项卡:单击“文件→选项→自定义功能区”,然后在右侧区域中勾选“开发工具”并单击“确定”。二、初始化数据(以Excel 2010为例,其他版本大同小异):比如

我们要计算的线性规划问题如下:那么,

怎么利用EXCEL求解线性规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

怎么利用Excel求解线性规划的详细步骤

利用线性回归方法求解生产计划

方法一:

1、建立数学模型:

设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润 确定目标函数及约束条件 目标函数:maxP 115x 90y

约束条件:10x 20y 200 .....................⑴ 4x 16y 128 .....................⑵ 15x 10y 220 .....................⑶ x,y 0 ..........................⑷ 2、在Excel中求解线性规划

首先,如图1所示,在Excel工作表格输入目标函数的系数、约束方程的系数和右端常数项:

图1

将目标方程和约束条件的对应公式输入各单元格中 F2=MMULT(B6:C6,F6:F7); F3=MMULT(B3:C3,F6:F7); F2=MMULT(B4:C4,F6:F7); F2=MMULT(B5:C5,F6:F7);

怎么利用Excel求解线性规划的详细步骤

出现图2样式:

图2

线性规划问题的电子表格模型建好后,即可利

线性规划问题建模与求解

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

机械工程学院工业工程专业

学号: 姓名:

线性规划问题建模与求解

一.实验目的

1. 掌握线性规划问题建模基本方法。

2. 熟练应用Excel“规划求解”功能对线性规划问题进行建模与求解。

3.掌握线性规划问题的对偶理论和灵敏度分析。

二.实验设备 硬件:PC机。

软件:Microsoft Excel。

三.实验内容

1.建立线性规划问题的数学模型。

2.利用Excel“规划求解”功能对线性规划问题进行建模与求解。 3.根据实验优化结果,进行灵敏度及经济分析。

四.实验步骤

某出版单位有4500个空闲的印刷机时和4000个空闲的装订工时,拟用于下列4种图书的印刷和装订。已知各种书每册所需的印刷和装订工时如表2所示。

表2 印刷和装订工时数据表

工 序 书 印刷 装订 预期利润(千元/千册) 问:

①该出版单位为了实现利润最大化,如何安排4种图书的生产? ②该单位是否愿意出50元的加班费,让工人加班1小时?

③由于管理工作的进步,使得第1种产品成本每件下降0.2元,此时得最优生产方案是否有变化,总利润是多少?

④出版第2种书的方案之一是降低成本,若第2种书的印刷加装订成本合计每册6元,则第2种书的成本为多少时,

线性规划中的整点问题求解方法

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

线性规划中的整点问题求解方法

线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。新教材中增加了线性规划的内容,充分体现了数学的实际应用,发展了学生的数学应用意识。由于实际问题中线性规划问题的最优解多为整数解,也是学生学习线性规划的难点,因而求线性规划的整数最优解的方法就显得尤为重要了。但教材中对此类问题却一带而过,对于具体的验算过程并没有作必要的描述,以致学生在解题过程中对于具体的验算过程掌握还不够清晰。

例1:

要将两种大小不同的的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如表所示,今需要A、B、C三种规格的成品分别为15,18,27

且使所用钢板张数最少。

解:设需要截第一种钢板x张,第二

2x y 15 x 2y 18

张钢板y张,则 x 3y 27,作出可行

x 0 y 0

域(如图所示),目标函数为z x y出在一组平行直线x y t中(t为参数)经过可行域内的点且和原点距离最近的直线,此直线经过直线x 3y 27和直线2x y 15的交点A(,于

1839572

),直线方程为x y 11,由5555

18391839

和都不是整数,而最优解(x,y)中,x,y必须都是整数,所以可行域内点 A(,)5555

使用Excel解线性规划问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

运筹学EXCEL操作介绍

使用Excel解线性规 划问题2010年10月15日

参考书目:

《Excel数据建模与应用》,第4章,清华大学出版社 《数据、模型与决策》第二章附录,机械工业出版社

运筹学EXCEL操作介绍

一个简单的例子某工厂计划生产两种产品,利润分别为2和3,已知生产单 位产品所需的设备台时和A、B两种原材料的消耗,如表

设备 原材料A 原材料B

产品1 1 4 0

产品2 2 0 4

8台时 16KG 12KG

目标是不超过资源限制的情况下,确定两产品产量,得 到最大利润。

运筹学EXCEL操作介绍

建立数学公式(步骤一)在工作表的顶部输入数据 确定每个决策变量所对应 的单元格位置 选择单元格输入公式,找 到目标函数的值 确定约束单元格输入公式, 计算每个约束条件左边的 值 确定约束单元格输入公式, 可采用 ‘复制粘贴’ 或 ‘直 计算每个约束条件右边的 接输入’ 的方式导入数据。 值

运筹学EXCEL操作介绍

建立数学公式(步骤二)在工作表的顶部输入数据 确定每个决策变量所对应 的单元格位置 选择单元格输入公式,找 到目标函数的值 选择一个单元格输入公式, 计算每个约束条件左边的 值 选择一个单元格输入公式, 计算每个约束条件右边的 值

图中,规定B1

运筹学实验2求解非线性规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

实验二 应用LINGO、MATLAB软件求解非线性规划

一.实验目的

1. 对实际问题进行数学建模,并学会用数学软件Matlab或运筹软件Lindo/Lingo对问题进行求解;

2. 学会建立M文件,并学会用Matlab的软件包内部函数求解非线性规划问题。

二.实验内容

1.写出下属问题的数学模型(LINGO)

将机床用来加工产品A,6小时可加工100箱。若用机床加工产品B,5小时可加工100箱。设产品A和产品B每箱占用生产场地分别是10和20个体积单位,而生产场地(包括仓库)允许15000个体积单位的存储量。机床每周加工时数不超过60小时。产品A生产x1(百箱)的收益为(60-5x1)x1元,产品B生产x2(百箱)的收益为(80-4x2)x2元,又由于收购部门的限制,产品A的生产量每周不能超过800箱,试制定周生产计划,使机床生产获最大收益。

2.用数学软件求解下列问题:(MATLAB) (1) minf??x1?2x2?x12?x22

minf??x1?2x2?s..t2x12?3x2?61212x1?x2221212(2)

x1?4x2?5x1,x2?0x1?3,x2?6

三. 模型建立

1、设生产A产品为x1百箱,生产B产品为x2

运筹学实验2求解非线性规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

实验二 应用LINGO、MATLAB软件求解非线性规划

一.实验目的

1. 对实际问题进行数学建模,并学会用数学软件Matlab或运筹软件Lindo/Lingo对问题进行求解;

2. 学会建立M文件,并学会用Matlab的软件包内部函数求解非线性规划问题。

二.实验内容

1.写出下属问题的数学模型(LINGO)

将机床用来加工产品A,6小时可加工100箱。若用机床加工产品B,5小时可加工100箱。设产品A和产品B每箱占用生产场地分别是10和20个体积单位,而生产场地(包括仓库)允许15000个体积单位的存储量。机床每周加工时数不超过60小时。产品A生产x1(百箱)的收益为(60-5x1)x1元,产品B生产x2(百箱)的收益为(80-4x2)x2元,又由于收购部门的限制,产品A的生产量每周不能超过800箱,试制定周生产计划,使机床生产获最大收益。

2.用数学软件求解下列问题:(MATLAB) (1) minf??x1?2x2?x12?x22

minf??x1?2x2?s..t2x12?3x2?61212x1?x2221212(2)

x1?4x2?5x1,x2?0x1?3,x2?6

三. 模型建立

1、设生产A产品为x1百箱,生产B产品为x2

非线性规划与多目标规划模型及其求解实验指导

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

非线性规划与多目标规划模型及其求解

一、实验目的及意义

[1] 学习非线性规划模型的标准形式和建模方法; [2] 掌握建立非线性规划模型的基本要素和求解方法; [3] 熟悉MATLAB软件求解非线性规划模型的基本命令;

[4] 通过范例学习,了解建立非线性规划模型的全过程,与线性规划比较其难点何在。 通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB软件进行非线性规划模型求解的基本命令,并进行灵敏度分析。解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。

二、实验内容

1.建立非线性规划模型的基本要素和步骤;

2.熟悉使用MATLAB命令对非线性规划模型进行计算与灵敏度分析; 3.学会计算无约束优化问题和有约束优化问题的技巧。

三、实验步骤

1.开启MATLAB软件平台,开启MATLAB编辑窗口;

2.根据问题,建立非线性规划模型,并编写求解规划模型的M文件; 3.保存文件并运行;

4.观察运行结果(数值或图形),并不断地改变参数设置观察运行结果; 5.根据观察到的结果和体会,写出实验报告。

四、实验要求与任务

根据

运筹学实验报告(一)线性规划问题的计算机求解(1)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

运筹学实验报告

实验课程:运筹学 实验日期: 任课教师:王 挺 班级:11级应数二班 姓名:刘兴成 学号:0201110237 一、实验名称: 简单线性规划模型的求解与Lingo软件的初步使用 二、实验目的: 了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。熟悉Lingo软件在运筹学模型求解中的作用,增强自身的动手能力,提高实际应用能力 三、实验要求: 1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令 2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。 4、能给出最优解和最优值; 5、能给出实际问题的数学模型,并利用lingo求出最优解 四、报告正文(文挡,数据,模型,程序,图形): 1.在Lingo中求解下面的线性规划数学模型; maxz?2x1?5x2maxz?2x1?5x2?x1?x3?4?x1?4?x?x?3?x?3 (1) (2) ?24?2s..t?s..t?x?2x?x?825?1?x1?2x2?8???x1,x2?0?

运筹学实验报告(一)线性规划问题的计算机求解 (1)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

运筹学实验报告

实验课程:运筹学 实验日期: 任课教师:王 挺 班级:11级应数二班 姓名:刘兴成 学号:0201110237 一、实验名称: 简单线性规划模型的求解与Lingo软件的初步使用 二、实验目的: 了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。熟悉Lingo软件在运筹学模型求解中的作用,增强自身的动手能力,提高实际应用能力 三、实验要求: 1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令 2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。 4、能给出最优解和最优值; 5、能给出实际问题的数学模型,并利用lingo求出最优解 四、报告正文(文挡,数据,模型,程序,图形): 1.在Lingo中求解下面的线性规划数学模型; maxz?2x1?5x2maxz?2x1?5x2?x1?x3?4?x1?4?x?x?3?x?3 (1) (2) ?24?2s..t?s..t?x?2x?x?825?1?x1?2x2?8???x1,x2?0?