相似三角形的性质定理和判定定理

“相似三角形的性质定理和判定定理”相关的资料有哪些?“相似三角形的性质定理和判定定理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“相似三角形的性质定理和判定定理”相关范文大全或资料大全,欢迎大家分享。

相似三角形的判定的预备定理

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

本节课是人教版数学 相似三角形的判定的预备定理 ,共20张PPT,本节课主要从比例线段入手,进入相似三角形的判定--预备定理。主要强调了预备定理的条件,使用环境和方法。最后在到简单的实际应用。

2.比例中项:当两个比例内项相等时, 即

a b (或 = c , a:b=b:c), b

那么线段 b 叫做线段 a 和 c 的比例中项.

即: b 2 = ac2 + 3,2

±1 3两数的比例中项是 ____ .两线段(2 + 3 )cm,(2 -

3 )cm的

1cm 比例中项是 ____ .

本节课是人教版数学 相似三角形的判定的预备定理 ,共20张PPT,本节课主要从比例线段入手,进入相似三角形的判定--预备定理。主要强调了预备定理的条件,使用环境和方法。最后在到简单的实际应用。

3.黄金分割:A

C

B

把一条线段( )分成两条线段,使其 AB 中较长线段( )是 AC 原线段(AB)与较短线段( )的比例中项,就叫做 BC 把这条 线段黄金分割。

即:AC = AB ?BC, ACC是线段AB的黄金分割点,较长线段AC = 2

2

5- 1 AB 2

(

5 - 1 , 则AB = ____ . 4

)

本节课是人教版数学 相似三角形的判定的预备定理 ,共20张P

三角形性质定理小结

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

三角形相关的性质与定理

三角形

1、 三角形的内角和是180° 2、 三角形的外角和是360°

3、 三角形的任意一个外角都等于和它不相邻的两个内角的和。 4、 三角形的任意一个外角都大于和它不相邻的内角 全等三角形 1、 对应边相等 2、 对应角相等 三角形全等的判定

1.三边对应相等的两个三角形全等(SSS或边边边)

2.两边和它们的夹角对应相等的两个三角形全等(SAS或边角边) 3.两角和它们的夹边对应相等的两个三角形全等。(ASA或角边角)

4.两个角和其中一个角的对边对应相等的两个三角形全等(AAS或角角边) 5.斜边和一条直角边对应相等的两个直角三角形全等(HL或斜边、直角边) 等腰三角形的性质

1.等腰三角形的两个底角相等(等边对等角);

2 “三线合一”.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 等腰三角形的判定

如果一个三角形有两个角相等,那么这两个角所对的边相等。(等角对等边) 等边三角形

等边三角形的性质

1.等边三角形的三个内角相等,并且每一个角都等于60°。 2.三个角都相等的三角形是等边三角形。

3.有一个角是60°的等腰三角形是等边三角形。 直角三角形

5.直角三角形的两个锐角互余

1..在直角

相似三角形的性质和判定练习

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

相似三角形的性质和判定练习

一.选择题(共25小题)

1.(2012?遵义)如图,在△ABC中,EF∥BC,

=,S

四边形BCFE

=8,则S△ABC=( A )

A. 9

2.(2012?宜宾)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为( C )

B. 10 C. 12 D. 13

A. B. C. D. 3.(2012?台湾)如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为何?( B )

A. B. C. 5 D. 6 4.(2012?绥化)如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=( D )

A. 2:5:25

B. 4:9:25 C. 2:3:5 D. 4:10:25 5.(2012?陕西)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=( D )

A. 1:2

6.(2012?日照)在菱形ABCD

九年级数学下册 2721 相似三角形的判定 时 相似三角形的判定定理12练习 新版新人教版

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

第2课时 相似三角形的判定定理1,2

基础题

知识点1 三边成比例的两个三角形相似

1.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,5,10,则甲、乙两个三角形( )

A.一定相似 B.一定不相似 C.不一定相似 D.无法判断

2.已知△ABC的三边长分别为6 cm,7.5 cm,9 cm,△DEF的一边长为4 cm,当△DEF的另两边长是下列哪一组数据时,这两个三角形相似( )

A.2 cm,3 cm B.4 cm,5 cm C.5 cm,6 cm D.6 cm,7 cm

3.(宜昌模拟)下列四个三角形中,与甲图中的三角形相似的是( )

4.如图,在△ABC中,AB=25,BC=40,AC=20.在△ADE中,AE=12,AD=15,DE=24,试判断这两个三角形是否相似,并说明理由.

知识点2 两边成比例且夹角相等的两个三角形相似

5.如图,在△ABC与△A

相似三角形的判定及有关性质

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

选修4-1

几何证明选讲

第1讲 相似三角形的判定及有关性质

对应学生203

考点梳理

1.平行线等分线段定理及其推论

(1)定理:那么在其他直线上截得的线段也相等.

(2)推论:②经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理及推论

(1)定理:三条平行线截两条直线,所得的对应线段成比例.

(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线)段成比例.

3.相似三角形的判定

(1)定义:如果在两个三角形中,对应角相等、对应边成比例,则这两个三角形叫做相似三角形.

(2)判定定理1:两角对应相等的两个三角形相似.

(3)判定定理2 (4)判定定理3 4.相似三角形的性质

(1)性质定理1:相似三角形对应边上的高、(2)性质定理25.直角三角形的射影定理

直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项. 如图,在Rt△ABC中,CD是斜边上的高, 则有CD2=AD·BD, AC2=AD·AB,BC2=BD·AB.

考点自测

1.如图,已知a∥b∥c,直线m,n分别与a,b,c交于点A,B,C和A′,B′,3

C′,如果AB=BC=1,A′B′=B′C′=_

相似三角形的判定及有关性质

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

选修4-1

几何证明选讲

第1讲 相似三角形的判定及有关性质

对应学生203

考点梳理

1.平行线等分线段定理及其推论

(1)定理:那么在其他直线上截得的线段也相等.

(2)推论:②经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理及推论

(1)定理:三条平行线截两条直线,所得的对应线段成比例.

(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线)段成比例.

3.相似三角形的判定

(1)定义:如果在两个三角形中,对应角相等、对应边成比例,则这两个三角形叫做相似三角形.

(2)判定定理1:两角对应相等的两个三角形相似.

(3)判定定理2 (4)判定定理3 4.相似三角形的性质

(1)性质定理1:相似三角形对应边上的高、(2)性质定理25.直角三角形的射影定理

直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项. 如图,在Rt△ABC中,CD是斜边上的高, 则有CD2=AD·BD, AC2=AD·AB,BC2=BD·AB.

考点自测

1.如图,已知a∥b∥c,直线m,n分别与a,b,c交于点A,B,C和A′,B′,3

C′,如果AB=BC=1,A′B′=B′C′=_

22.3相似三角形的性质(2)--性质定理的应用

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

第22章 课题《22.3相似三角形的性质(2)》 --性质定理的应用 第______周 星期_____ 第_____节 2017_____月_____日 编案教师:甘 教 学 目 标 教学重点 教学难点 执教教师: 教学课时: 1 节 知识与技能 使学生能运用相似三角形的性质解决的实际问题,巩固相似三角形性质。 1.通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。 过程与方法 2.通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。 情感与价值观 通过对生活问题的解决,体会数学知识在实际中的广泛应用。 运用相似三角形的性质解决简单的实际问题。 如何将实际问题转化为相似三角形的性质问题 教学过程 教学环节 教学内容 1.相似三角形的性质定理的内容是什么? 2.练一练: (1)已知:△ABC∽△A′B′C′ ,BC=3.6cm,BC =6cm, AE是△ABC的一条中线,AE=2.4cm, 则△A′B′C′中对应中线A′E′的长是 一. 温故知新 (

22.3相似三角形的性质(2)--性质定理的应用

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

第22章 课题《22.3相似三角形的性质(2)》 --性质定理的应用 第______周 星期_____ 第_____节 2017_____月_____日 编案教师:甘 教 学 目 标 教学重点 教学难点 执教教师: 教学课时: 1 节 知识与技能 使学生能运用相似三角形的性质解决的实际问题,巩固相似三角形性质。 1.通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。 过程与方法 2.通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。 情感与价值观 通过对生活问题的解决,体会数学知识在实际中的广泛应用。 运用相似三角形的性质解决简单的实际问题。 如何将实际问题转化为相似三角形的性质问题 教学过程 教学环节 教学内容 1.相似三角形的性质定理的内容是什么? 2.练一练: (1)已知:△ABC∽△A′B′C′ ,BC=3.6cm,BC =6cm, AE是△ABC的一条中线,AE=2.4cm, 则△A′B′C′中对应中线A′E′的长是 一. 温故知新 (

相似三角形的性质

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

篇一:相似三角形的定义与性质

同学个性化教学设计

年 级: 九年级教 师: 张永慧科 目:数学 班 主 任: 朱敏_ 日 期: _时 段: ___

1 海到无边天作岸,山高绝顶我为峰

校长签字: ___________日期3 海到无边天作岸,山高绝顶我为峰

篇二:相似三角形性质

精锐教育学科辅导讲义

篇三:相似三角形的性质 导学案

《相似三角形的性质》 学案

【学习目标】

知识与技能:理解并运用相似三角形的性质,灵活运用相似三角形的性质解题。 过程与方法:经历探索相似三角形性质的过程,发展逻辑思维能力和应用能力。 情感与价值观:感受数学学习中的推理过程,积极参与推理活动。

【温故知新】

1、相似三角形的判定方法有哪一些?

2、如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE 与△ABC的相似比为 。 3、已知:△ABC△∽ABC,AB=2cm,BC=3cm,AB=4cm, AC=2cm,则AC= cm, BC=cm。

''

''

'''

''

B

【学习过程】

1、自主学习:两个相似三角形,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.

例如,如图:△ABC和△A′B

等腰三角形的性质定理

标签:文库时间:2025-02-15
【bwwdw.com - 博文网】

石家庄精英中学导学提纲初三数学使用时间:7月3日

第一章第一节你能证明它们吗?(1)

学习目标:

1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理。学习重点:了解所学公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。学习难点:证明等腰三角形性质时辅助线做法。

预习指导:

1、先精读一遍教材P2-P4,用红笔进行勾画;再针对学案二次阅读教材,并回答问题;

2、找出自己的疑惑和需要讨论的问题,随时记录在课本或预习学案上,准备课上讨论质疑。

学习环节:

一、自学导航:

1、什么是等腰三角形?

2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

3、试用折纸的办法回忆等腰三角形有哪些性质?

4、列举我们已知道的公理:

(1)公理:同位角,两直线平行。

(2)公理:两直线,同位角。

(3)公理:的两个三角形全等。(简称,字母表示)(4)公理:的两个三角形全等。(简称,字母表示)(5)公理:的两个三角形全等。(简称,字母表示)(6)公理:全等三角形的对应边,对应角。

二、合作探究:

(一)两角及其中一角的对边对应相等的两个三角形全等。(AAS)

证明过程:

已知:

求证: