二重积分的计算与应用论文
“二重积分的计算与应用论文”相关的资料有哪些?“二重积分的计算与应用论文”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二重积分的计算与应用论文”相关范文大全或资料大全,欢迎大家分享。
7.2.2 二重积分的计算法(2)
二重积分的计算法(2)
一、利用极坐标系计算二重积分
1122
i (ri ri) i ri 221
(2ri ri) ri i2
r (r r) ri i
2
i ri i,
D
f(x,y)dxdy f(rcos ,rsin )rdrd .
D
二重积分化为二次积分的公式(1)
区域特征如图极点在区域之外 ,
1( ) r 2( ).
2( )
r ( )
f(rcos ,rsin )rdrd
d
D
1( )
f(rcos ,rsin )rdr.
区域特征如图
, 1( ) r 2( ).
r( )
f(rcos ,rsin )rdrd
D
d
2( )
1( )
f(rcos ,rsin )rdr.
二重积分化为二次积分的公式(2)
区域特征如图(极点在D的边界上) ,0 r ( ).
D
r ( )
f(rcos ,rsin )rdrd
d
D
( )
f(rcos ,rsin )rdr.
注意内下限未必全为0
区域特征如图
(极点在D的内部)
A
0 2 ,0 r ( ).
( )
D
f(rcos ,rsin )rdrd
d
02
f(rcos ,rsin )rdr.
二重积分的计算方法
重庆三峡学院数学分析课程论文
二重积分的计算方法
院 系 数学与统计学院
专 业 数学与应用数学(师范) 姓 名 年 级 2010级 学 号
指导教师 刘学飞
2014年5月
二重积分的计算方法
(重庆三峡学院数学与统计学院10级数本1班)
摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算
引言
二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重
要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被
积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求
二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.
1. 预备知识
1.1二重积分的定义
设f?x,y?是定
有关二重积分的计算与应用的本科毕业论文
..
学号:201021140309
本 科 生 毕 业 论 文
论 文 题 目: 二重积分的计算与应用研究
作 者: 甘 泉
院 系: 数理学院
专 业: 数学与应用数学
班 级: 201003
指 导 教 师: 刘 春 潮
2014 年 5 月 8 日
NO.:201021140309 Huanggang Normal University
Topic Author College Specialty
Class Tutor
Thesis Graduates
Double Integral Calculation and Its Application
GAN Quan
二重积分、三重积分
二重积分、三重积分的概念和性质,二重积分、三重积分的计算和应用。
第九章 重积分
教学内容
二重积分、三重积分的概念和性质,二重积分、三重积分的计算和应用。 教学目的、要求
1.理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分中值定理。 2.熟练掌握二重积分在直角坐标系下的计算方法。
3.掌握二重积分在极坐标系下的计算方法,掌握三重积分在直角坐标系、柱坐标系、球坐标系下的计算方法。
4.会用重积分来表达一些几何量(如平面图形的面积、体积、曲面面积)和物理量(如质量、质心坐标、转动惯量、引力等)。 重点与难点
1重点:二重积分的概念与计算。
2难点:三重积分的计算,重积分的应用。
第一节 二重积分的概念与性质
一、二重积分的概念 1、曲顶柱体的体积
设有一空间立体 ,它的底是xoy面上的有界区域D,它的侧面是以D的边界曲线为准线,而母线平行于z轴的柱面,它的顶是曲面z f x,y (f x,y 在D上连续)且f x,y 0,这种立体称为曲顶柱体。曲顶柱体的体积V可以这样来计算:
用任意一组曲线网将区域D分成n个小区域 1, 2, , n ,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体 分划成n个小曲顶柱
高数 二重积分
《高等数学I》A班习题 班级_____________ 姓名____________ 学号_________________
第十一章 习题一 曲线积分与格林公式
(为了节省纸张和便于收发,请您双面打印)
一.选择题
1.设L为圆周x2?y2?1,L1为该圆周在第一象限的部分,则 ( ) (A)xds?4xds; (B)
LL1???Lyds?4?yds;
L1L1(C)
?Lx2sinyds?4?x2sinyds; (D)?x2cosyds?4?x2cosyds.
L1L22.设L为沿右半圆周x?1?y从点A(0,?1)经点B(1,0)到点C(0,1)的路径,L1为
L上从点B到点C的路径,则积分?|y|dx?y3dy等于 ( )
L(A)0; (B)2?L1|y|dx?y3dy; (C)2?|y|dx; (D)2?y3dx.
L1L13.设G为一个平面单连通区域,P、Q在G上具有一阶连续偏导数,则积分
?L Pdy?Qdx与路径无关的充分必要条件是 ( )
(A)
?P?Q?P?
21.1二重积分概念
很好的教案
第二十一章 二重积分
§1 二重积分概念
教学目的 掌握二重积分的定义和性质. 教学内容 二重积分的定义和性质.
(1) 基本要求:掌握二重积分的定义和性质,二重积分的充要条件,了解有界闭区域上的连续函数的可积性.
(2) 较高要求:平面点集可求面积的充要条件. 教学建议
(1) 要求学生必须掌握二重积分的定义和性质,知道有界闭区域上的连续函数必可积.由于二元函数可积的充要条件与定积分类似,这方面的内容可作简略介绍.
(2) 对较好学生可详细讲述二元函数可积的充要条件的证明,并布置有关习题. 教学程序
一、平面图形的面积
(一)、内、外面积(约当,黎曼外内测度)的概念
直线网T分割平面图形P,T的网眼中小闭矩形 i的分类: (ⅰ) i含的全是P的内点,
(ⅱ) i含的全是P的外点(不含P的点), (ⅲ) i内含有P的边界点, 记sP T 为T的第ⅰ类 i的面积的和. 记SP T 为T的第ⅰ和第三类 i的面积的和. 记IP=记IP=
sup sP T T,称为P的内面积.
inf SP T T,称为P的外面积.
定义1 若平面图形P的内面积IP等于它的外面积IP,则称P为可求面积,并称其共同值IP=IP=IP为P的面积(约当,黎曼测度)
对称性在定积分及二重积分计算中的应用
对称性在定积分及二重积分计算中的应用
第10卷第1期2010年1月1671—1815(2010)1-0172—04
科学技术与工程
ScienceTechnologyandEngineering
V01.10⑥2010
No.1
Jan.2010
Sci.Tech.Engng.
对称性在定积分及二重积分计算中的应用
薛春荣
王
芳
(渭南师范学院数学系,渭南714000)
摘要
运用数学分析中的积分总结了对称性在积分运算中的应用,给出了对称性在定积分、二重积分运算中的有关定理以
及应用;充分体现了对称性在积分运算中带来的方便,达到了简化积分运算的目的。这一点对于数学理论的研究及积分运算的解答都有重要意义。关键词
对称性
定积分
二重积分
中图法分类号0172.2;文献标志码A
积分在数学分析中有很重要的地位;积分的计算方法有许多种,相关文献都对其有探讨,但是对对称性的研究却很少涉及。对称性在积分运算中有着很重要的意义,通常可以简化计算。本文研究了对称性在积分运算中的应用,归纳总结出利用平面区域的对称性来计算积分。
,.o
肪圳戈=厂∥圳戈+取圳戈=
舢
,.o
.,o
f八一右)d(一右)+f八戈)dx=
.,O
肛州右+肛州戈。
,.o
1相关定理及证明
定理1
u。
所以:.J一疆戈)出=2.J∥戈)毗
第二节 二重积分的计算法
第二节 二重积分的计算方法
教学目的:利用直角坐标系把二重积分化为二次积分 教学重难点:将积分区域用不等式组表示 教 法:讲授 课 时:4
仅仅依靠二重积分的定义及其性质,不可能对一般的二重积分进行计算。本节介绍一种二重积分的计算方法,这种方法是把二重积分化为两次单积分(即两次定积分)来计算。 一、利用直角坐标系计算二重积分
我们首先来考虑直角坐标系下面积元素d?的表达形式。在二重积分的定义中对区域D的分割是任意的,极限lim?f(?i,?i)??i都存在,那么对
??0i?1n于区域进行特殊分割该极限也应该存在。因此,在直角坐标系下,我们用平行于x轴和y轴的两族直线把区域D分割成许多小区域(图10—4)。除靠区域D边界曲线的一些小区域外,其余的都是小矩形区域。当这些小区域的直径的最大者??0时,这些靠区域D边界的不规则的小区域的面积之和趋于0。因此,第i个小矩形区域??i的面积
??i??xj??yk。 因此,直角坐标系下面积元素
d??dxdy。 于是二重积分的直角坐标形式为
??f(x,y)d????f(x,y)dxdy。
DD
由二重积分的几何意义
二重积分的概念和性质
第九章 重积分
第一节 二重积分的概 念与性质1、二重积分的概念 2、二重积分的性质
一、二重积分的概念1.曲顶柱体的体积 给定曲顶柱体: 底: xoy 面上的闭区域 D 顶: 连续曲面
D
侧面:以 D 的边界为准线 , 母线平行于 z 轴的柱 面 求其体积. 解法: 类似定积分解决问题的思想:“大化小,常代变,近似和,求极限”
机动
目录
上页
下页
返回
结束
1)“大化小” 用任意曲线网分D为 n 个区域
1, 2 , , n
以它们为底把曲顶柱体分为 n 个 f ( k , k ) 小曲顶柱体 ( k , k ) 2)“常代变” 在每个
D k
中任取一点
则
Vk f ( k , k ) k3)“近似和”n
(k 1, 2 , , n)
f ( k , k ) kk 1机动 目录 上页 下页 返回 结束
4)“取极限”
( k ) max P P2 P ,P2 k 1 1令 max ( k )1 k nn
f ( k , k )( k , k ) k
V lim f ( k , k ) k 0 k 1
机动
目录
上页
下页
二重积分的概念和性质
第九章 重积分
第一节 二重积分的概 念与性质1、二重积分的概念 2、二重积分的性质
一、二重积分的概念1.曲顶柱体的体积 给定曲顶柱体: 底: xoy 面上的闭区域 D 顶: 连续曲面
D
侧面:以 D 的边界为准线 , 母线平行于 z 轴的柱 面 求其体积. 解法: 类似定积分解决问题的思想:“大化小,常代变,近似和,求极限”
机动
目录
上页
下页
返回
结束
1)“大化小” 用任意曲线网分D为 n 个区域
1, 2 , , n
以它们为底把曲顶柱体分为 n 个 f ( k , k ) 小曲顶柱体 ( k , k ) 2)“常代变” 在每个
D k
中任取一点
则
Vk f ( k , k ) k3)“近似和”n
(k 1, 2 , , n)
f ( k , k ) kk 1机动 目录 上页 下页 返回 结束
4)“取极限”
( k ) max P P2 P ,P2 k 1 1令 max ( k )1 k nn
f ( k , k )( k , k ) k
V lim f ( k , k ) k 0 k 1
机动
目录
上页
下页