奥数最大最小问题
“奥数最大最小问题”相关的资料有哪些?“奥数最大最小问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“奥数最大最小问题”相关范文大全或资料大全,欢迎大家分享。
最大最小问题
十五、小 学 数 学 奥 数
——最大最小问题
〔简析〕人们碰到的各种优化问题、高傲低耗问题,最终都表现为数学上的极值问题,即小
学阶段的最大最小问题。最大最小问题涉及到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
22〔例〕:有甲、乙两个两位数,甲数的等于乙数的。这两个两位数的差最多是多少?
7322〔解析〕:甲数:乙数=:?7:3,甲数是7份,乙数是3份。由甲是两位数可知,每份的
37数最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-4)=56。 答:这两个数的差最多是56。
511、甲、乙两数都是三位数,如果甲数的恰好等于乙数的,那么甲、乙两数的和最小是多
64少?
2、把14拆成若干个自然数的和,要使这些自然数的乘积尽量大,应如何拆? 3、三个自然数,后面两个数的积与前面两个数的积之差是114。这三个数中最小的数是多少? 4、有三个数字能组成6个不同的三位数。这6个三位数的和是286。求所有这样的6个三位数中最小的三数数。
部分答案:
2、这要考虑一些隐售的限制条件,可以这样思考:
<1>要使14拆成的自然数的乘积最大,所拆成的数的个数要尽可能多,但1不应了现,因为1与任何数的积仍为原数。
<2>拆出的加数不要超过42>
1>变化线段和最大、差最小问题
初中数学专题复习:最短距离问题分析
最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。利用一次函数和二次函数的性质求最值。 一、“最值”问题大都归于两类基本模型:
Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函
数的最大或最小值
Ⅱ、归于几何模型,这类模型又分为两种情况:
(1)归于“两点之间的连线中,线段最短”。凡属于求“变动的两线段之和的最小值”时,
大都应用这一模型。
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大
都应用这一模型。
(1)归于“两点之间的连线中,线段最短”
B 几何模型:
A 条件:如图,A、B是直线l同旁的两个定点.
问题:在直线l上确定一点P,使PA?PB的值最小. l
P 方法:作点A关于直线l的对称点A?,连结A?B交l于点P,
则PA?PB?A?B的值最小(不必证明).
A?模型应用:
小学奥数第21讲 数字和与最大最小问题(含解题思路)
21、数字和与最大最小问题
【数字求和】
例1 100个连续自然数的和是8450,取其中第1个,第3个,第5个, ,第99个(所有第奇数个),再把这50个数相加,和是______。 (上海市第五届小学数学竞赛试题)
讲析:第50、51两个数的平均数是8450÷ 100= 84. 5,所以,第50个数是84。则100个连续自然数是:
35,36,37, ,133,134。
上面的一列数分别取第1、3、5、 、99个数得:
35,37,39, 131,133。
则这50个数的和是:
例2 把1至100的一百个自然数全部写出来,所用到的所有数码的和是_____。
(上海市第五届小学数学竞赛试题)
讲析;可把1至100这一百个自然数分组,得
(1、2、3、 、9),(10、11、12、 、19),(20、21、
22、 29), ,(90、91、92、 99),(100)。
容易发现前面10组中,每组的个位数字之和为45。而第一组十位上是0,第二组十位上是1,第三组十位上是2, 第十组十位上是9,所以全体十位上的数字和是(l+2+3+ +9)×10=450。故所有数码的和是45×10+450+l=901。
续若干个数字
抛物线中两线段的和最小问题(及差最大问题)
抛物线中两线段和最小问题(及差最大问题)(已整理A4)
1. (2012湖北恩施8分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式; (2)设点M(3,m),求使MN+MD的值最小时m的值; (3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
1?x?2?(x?m)?m?0?与x 轴m相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧. (1)若抛物线C1过点M(2,2),求实数m 的值. (2)在(1)的条件下,求△BCE的面积.
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标. (4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
2. (2012湖北黄冈14分)如图,已知抛物线的方程C1:y?
抛物线中两线段的和最小问题(及差最大问题)
抛物线中两线段和最小问题(及差最大问题)(已整理A4)
1. (2012湖北恩施8分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式; (2)设点M(3,m),求使MN+MD的值最小时m的值; (3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
1?x?2?(x?m)?m?0?与x 轴m相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧. (1)若抛物线C1过点M(2,2),求实数m 的值. (2)在(1)的条件下,求△BCE的面积.
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标. (4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
2. (2012湖北黄冈14分)如图,已知抛物线的方程C1:y?
抛物线中两线段的和最小问题(及差最大问题)(1)
抛物线中两线段和最小问题(及差最大问题)(已整理A4)
1. (2012湖北恩施8分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由; (4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
1,(2012湖北恩施8分)
【分析】(1)利用待定系数法求二次函数解析式、一次函数解析式。(2)根据轴对称的性质和三角形三边关系作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD的值最小。(3)分BD为平行四边形对角线和BD为平行四边形边两种情况讨论。(4)如图,过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x+2x+3),求得线段PQ=﹣x+x+2。由图示以及三角形的面积公式知S?APC法可知△APC的面积的最大值
抛物线中两线段的和最小问题(及差最大问题)(1)
抛物线中两线段和最小问题(及差最大问题)(已整理A4)
1. (2012湖北恩施8分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由; (4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
1,(2012湖北恩施8分)
【分析】(1)利用待定系数法求二次函数解析式、一次函数解析式。(2)根据轴对称的性质和三角形三边关系作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD的值最小。(3)分BD为平行四边形对角线和BD为平行四边形边两种情况讨论。(4)如图,过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x+2x+3),求得线段PQ=﹣x+x+2。由图示以及三角形的面积公式知S?APC法可知△APC的面积的最大值
奥数最大公因数、最小公倍数讲义及答案
数的整除(3)最大公因数、最小公倍数
教室 姓名 学号
【知识要点】
1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。自然数a、b的最大公因数记作(a,b)。
2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。自然数a、b的最小公倍数记作[a,b]。 3、两个自然数的最大公因数和最小公倍数的性质: (1)(a,b)×[a,b]=a×b;
(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。 (3)a+b与b的最大公因数,等于a与b的最大公因数。 【典型例题】
例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。
解:由性质(1)得到乙数=168×4÷24=28.
例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?
解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。(90,42)=6.至少能剪90×42÷(
奥数最大公因数、最小公倍数讲义及答案
数的整除(3)最大公因数、最小公倍数
教室 姓名 学号
【知识要点】
1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。自然数a、b的最大公因数记作(a,b)。
2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。自然数a、b的最小公倍数记作[a,b]。 3、两个自然数的最大公因数和最小公倍数的性质: (1)(a,b)×[a,b]=a×b;
(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。 (3)a+b与b的最大公因数,等于a与b的最大公因数。 【典型例题】
例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。
解:由性质(1)得到乙数=168×4÷24=28.
例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?
解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。(90,42)=6.至少能剪90×42÷(
华罗庚学校数学教材(六年级下)第06讲 最大与最小问题
珍藏版
本系列共14讲
第六讲最大与最小问题
.文档贡献者:先看一个简单的问题:
妈妈让小明给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟,小明估算了一下,完成这些工作要花20分钟.为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?
这个题目,取材于华罗庚教授
1965年发表的《统筹方法平话》.开水壶不洗,不能烧开水,因而洗开水壶是烧开水的先决条件;没开水、没茶叶、不洗壶杯则不能泡茶,这些又是泡茶的先决条件.因此我们可以列出它们的相互关系图:
从上图中很容易看出,最省时间的办法是:先洗开水壶用1分钟,接着烧开水用15分钟,在等待水开的过程中,可以完成洗茶壶、洗茶杯、拿茶叶,水开了就沏茶,这样仅用16分钟就能沏茶了,这是没有“窝工”的最合理的安排,用最少的时间完成了工作。
像这样,研究某种量(或几种量)在一定条件下取得最大值或最小值的问题,我们称为最大与最小问题.
在日常生活、科学研究和生产实践中,存在大量的最大与最小问
珍藏版
题.如,把一些物资从一个地方运到另一个地方,怎样运才能使路程尽可能短,运费最省;一项(或多项)工作,如何安排调配,才能使工期最短、效率最高等等,都是最大与最小问题.