石英晶体振荡器的突出优点
“石英晶体振荡器的突出优点”相关的资料有哪些?“石英晶体振荡器的突出优点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“石英晶体振荡器的突出优点”相关范文大全或资料大全,欢迎大家分享。
石英晶体振荡器
宁 波 工 程 学 院
高频实验报告
实 验 名 称 : 石英晶体振荡器 专业、班级 : 电信082 姓 名: 储德峰 学 号: 08401180233
实验4 石英晶体振荡器
—、实验准备
1.做本实验时应具备的知识点: ? ? ?
石英晶体振荡器 串联型晶体振荡器
静态工作点、微调电容、负载电阻对晶体振荡器工作的影响
2.做本实验时所用到的仪器: ? ? ? ?
晶体振荡器模块 双踪示波器 频率计 万用表
二、实验目的
1.熟悉电子元器件和高频电子线路实验系统。
2.掌握石英晶体振荡器、串联型晶体振荡器的基本工作原理,熟悉其各元件功能。 3.熟悉静态工作点、负载电阻对晶体振荡器工作的影响。
4.感受晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的方法。
三、实验内容
C3C4C5 1.用万用表进行静态工作点测量。
2.用示波器观察振荡器输出波形,测量振荡电压
R4BG1JTIL1C2R5峰-峰值Vp-p,并以频率计测量振荡频率。 3.观察并测量静态工作点、负载电阻等因素对晶
体振荡器振荡幅度和频率的影响。
图5-1
高频石英晶体振荡器仿真报告
燕山大学
石英晶体振荡器设计报告
题 目:
专 业: 电子信息工程 姓 名: 李飞虎 指导教师: 李英伟 院系站点: 信息科学与工程学院
2014年 11 月 17 日
高频石英晶体振荡器仿真报告
1.振荡器电路属于一种信号发生器类型,即表现为没有外加信号的情况下能自动生成具有一定频率、一定波形、一定振幅的周期性交变振荡信号的电子线路。振荡器起振时是将电路自身噪声或电源跳变中频谱很广的信号进行放大选频。此时振荡器的输出幅值是不断增长的,随着振幅的增大,放大器逐渐由放大区进入饱和区或者截止区,其增益逐渐下降,当放大器增益下降而导致环路增益下降到1时,振幅的增长过程将停止,振荡器达到平衡,进入等幅振荡状态。振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。
2,串联晶体振荡器
在串联型晶体振荡器中,晶体接在振荡器要求低阻抗的两点之间,通常接在反馈电路中。图1-1和图1-2显示出了一串联型振荡器的实际路线和等效电路。可以看出,如果将石英晶体短路,该电路即为电容反
实验4 石英晶体振荡器 - 图文
实验4 石英晶体振荡器
一、 实验准备
1. 做本实验时应具备的知识点;
● 石英晶体振荡器 ● 串联型晶体振荡器
● 静态工作点、微调电容。负载电阻对晶体振荡器工作的影响 2. 做本实验时所用到的仪器:
● 晶体振荡器模块 ● 双踪示波器 ● 频率计 ● 万用表
二、 实验目的
1. 熟悉电子元器件和高频电子线路实验系统。
2. 掌握石英晶体振荡器、串联型晶体振荡器的基本工作原理。熟悉其各元件功能、 3. 熟悉静态工作点、负载电阻对晶体振荡器工作的影响。
4. 感受晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的方法。
三、 实验内容
1. 用万用表进行静态工作点测量。
2. 用示波器观察振荡器输出波形,测量振荡电压峰峰值Vp-p,并以频率计测量震荡频
率。
3. 观察并测量静态工作点、负载电阻等因素对晶体震荡器的振荡幅度和频率的影响。
四、 基本原理
1. 晶体振荡器的工作原理
一种晶体振荡器的交流通路如图4-1所示。图中,若将晶体短路,则L1,C2,C3就构成了典型的电容三点式振荡器(考毕兹电路)。因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。若取L1=4.3μH、C2=820pF、C3=180pF,则
电容三点式及石英晶体振荡器实验
设计高频振荡电路的一种思路。
实验一 电容三点式及石英晶体振荡器
一、实验目的
1、掌握电容三点式振荡器的基本原理、振荡频率的计算及调整方法。 2、掌握振荡回路Q值对频率稳定度的影响。 3、掌握石英晶体振荡器的基本特性。 二、实验仪器
双踪示波器,数字万用表,高频电路实验装置
三、实验原理
1、电容三点式振荡器 实验电路见图1-1,是一个克拉泼式电路。改变电阻RP可改变三极管的集电极电流,由欧姆定律,IEQ UERE,该电路中RE 1 k 。该电路的正反馈系数由C和C 决定,电阻R用于改变选频电路的品质因数Q。改变电容CT可改变振荡器的振荡频率,当C
CT
,C
CT
时,
f0 12πL1CT
。 +12V
OUT
C
2、石英晶体振荡器
串联型石英晶体振荡器的原理电路见图1-2。石英晶体的品质因数很高,因此该电路仅在石英晶体的串联谐振频率附近满足起振的振幅条件,频率稳定性极高,但振荡频率不易改变。
+12
V C
OUT
四、实验内容及步骤
设计高频振荡电路的一种思路。
(一)LC振荡电路——克拉泼电路
1、CT对振荡频率和输出电压的影响
按图1-l连接电路,改变RP使IEQ 2 mA,取C 120pF,C 680pF, 110k ,用频率计测量振荡频率,用示波器测
电容三点式及石英晶体振荡器实验
设计高频振荡电路的一种思路。
实验一 电容三点式及石英晶体振荡器
一、实验目的
1、掌握电容三点式振荡器的基本原理、振荡频率的计算及调整方法。 2、掌握振荡回路Q值对频率稳定度的影响。 3、掌握石英晶体振荡器的基本特性。 二、实验仪器
双踪示波器,数字万用表,高频电路实验装置
三、实验原理
1、电容三点式振荡器 实验电路见图1-1,是一个克拉泼式电路。改变电阻RP可改变三极管的集电极电流,由欧姆定律,IEQ UERE,该电路中RE 1 k 。该电路的正反馈系数由C和C 决定,电阻R用于改变选频电路的品质因数Q。改变电容CT可改变振荡器的振荡频率,当C
CT
,C
CT
时,
f0 12πL1CT
。 +12V
OUT
C
2、石英晶体振荡器
串联型石英晶体振荡器的原理电路见图1-2。石英晶体的品质因数很高,因此该电路仅在石英晶体的串联谐振频率附近满足起振的振幅条件,频率稳定性极高,但振荡频率不易改变。
+12
V C
OUT
四、实验内容及步骤
设计高频振荡电路的一种思路。
(一)LC振荡电路——克拉泼电路
1、CT对振荡频率和输出电压的影响
按图1-l连接电路,改变RP使IEQ 2 mA,取C 120pF,C 680pF, 110k ,用频率计测量振荡频率,用示波器测
石英晶体振荡电路
石英晶体振荡电路
石英晶体谐振器, 简称石英晶体, 具有非常稳定的固有频率。 对于振荡频率的稳定性要求高的电路, 应选用石英晶体作选频网络。 一、石英晶体的特点
将二氧化硅(SiO2)结晶体按一定的方向切割成很薄的晶片, 再将晶片两个对应的表面抛光和涂敷银层, 并作为两个极引出管脚, 加以封装, 就构成石英晶体谐振器。其结构示意图和符号如右图所示。
1.压电效应和压电振荡
在石英晶体两个管脚加交变电场时, 它将会产有利于一定频率的机械变形, 而这种机械振动又会产生交变电场, 上述物理现象称为压电效应。 一般情况下, 无论是机械振动的振幅, 还是交变电场的振幅都非常小。 但是, 当交变电场的频率为某一特定值时, 振幅骤然增大, 产生共振, 称之为压电振荡。 这一特定频率就是石英晶体的固有频率, 也称谐振频率。 2.石英晶体的等效电路和振荡频率
石英晶体的等效电路如下图(a)所示。 当石英晶体不振动时, 可等效为一个平板电容C0, 称为静态电容;其值决定于晶片的几何尺寸和电极面积, 一般约为几到几十皮法。 当晶片产生振动时, 机械振动的惯性等效为电感L, 其值为几毫亨。 晶片的弹性等效为电容C, 其值仅为0.01到0
正弦波振荡器
第6章 正弦波振荡器
6.1 概 述
本章讨论的是自激式振荡器,它是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量电路。
振荡器的分类:
按波形分:正弦波振荡器和非正弦波振荡器 按工作方式:负阻型振荡器和反馈型振荡器 按选频网络所采用的元件分:
LC振荡器、RC振荡器和晶体振荡器等类型 本章主要讨论
? 反馈型正弦波振荡器的基本工作原理 ? 振荡器的起振条件 ? 振荡器的平衡条件 ? 振荡器的平衡稳定条件
? 正弦波振荡器三端电路的判断准则
? 正弦波振荡器的电路特点、频率稳定度等性能指标
+VCC 6.2 反馈型振荡器基本工作原理
+ C vo L M + 实际中的反馈振荡器是由反馈放大器演变而来,vf – – 如右图。 2 K 若开关K拨向―1‖时,该电路则为调谐放大器,当
+ 1 输入信号为正弦波时,放大器输出负载互感耦合变压
+ R器L2上的电压为vf ,调整互感M及同名端以及回路vi b2 Re Ce – 参数,可以使 vi = vf 。
此时,若将开关K快速拨向―2‖点,则集电极电路和基极电路都维持开关K接到―1‖点时的状态,即始终
维持着与vi相同频率的正弦信号。这时,调谐放大器就变为
正弦波振荡器
第6章 正弦波振荡器
6.1 概 述
本章讨论的是自激式振荡器,它是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量电路。
振荡器的分类:
按波形分:正弦波振荡器和非正弦波振荡器 按工作方式:负阻型振荡器和反馈型振荡器 按选频网络所采用的元件分:
LC振荡器、RC振荡器和晶体振荡器等类型 本章主要讨论
? 反馈型正弦波振荡器的基本工作原理 ? 振荡器的起振条件 ? 振荡器的平衡条件 ? 振荡器的平衡稳定条件
? 正弦波振荡器三端电路的判断准则
? 正弦波振荡器的电路特点、频率稳定度等性能指标
+VCC 6.2 反馈型振荡器基本工作原理
+ C vo L M + 实际中的反馈振荡器是由反馈放大器演变而来,vf – – 如右图。 2 K 若开关K拨向―1‖时,该电路则为调谐放大器,当
+ 1 输入信号为正弦波时,放大器输出负载互感耦合变压
+ R器L2上的电压为vf ,调整互感M及同名端以及回路vi b2 Re Ce – 参数,可以使 vi = vf 。
此时,若将开关K快速拨向―2‖点,则集电极电路和基极电路都维持开关K接到―1‖点时的状态,即始终
维持着与vi相同频率的正弦信号。这时,调谐放大器就变为
正弦波振荡器
1.在自激振荡电路中,下列哪种说法是正确的 ( C ) A.LC振荡器、RC振荡器一定产生正弦波 B.石英晶体振荡器不能产生正弦波 C.电感三点式振荡器产生的正弦波失真较大 D.电容三点式振荡器的振荡频率做不高 2.正弦振荡器中选频网络的作用是 ( A ) A.产生单一频率的正弦波 B.提高输出信号的振幅 C.保证电路起振 3.在高频放大器中,多用调谐回路作为负载,其作用不包括 ( D ) A.选出有用频率 B.滤除谐波成分 C.阻抗匹配 D.产生新的频率成分 4.正弦波振荡器中正反馈网络的作用是 ( A )
A. 保证产生自激振荡的相位条件 B. 提高放大器的放大倍数,使输出信号足够大 C. 产生单一频率的正弦波 5.电容三点式LC正弦波振荡器与电感三点式LC正弦波振荡器比较,优点是 (
高频压控振荡器设计 - 图文
目录
前言 ............................................................................................................................................. 1 1高频压控振荡器设计原理压控振荡器 ................................................................................ 2 1.1工作原理 ............................................................................................................................ 2 1.2变容二极管压控振荡器的基本工作原理 ........................................................................ 2 2高频压控振荡器电路设计 ..................................