智能优化算法及其MATLAB实例
“智能优化算法及其MATLAB实例”相关的资料有哪些?“智能优化算法及其MATLAB实例”相关的范文有哪些?怎么写?下面是小编为您精心整理的“智能优化算法及其MATLAB实例”相关范文大全或资料大全,欢迎大家分享。
现代优化算法matlab实现
将以下数据保存为sj.txt
53.7121 15.3046 51.1758 0.0322 46.3253 28.2753 30.3313 6.9348 56.5432 21.4188 10.8198 16.2529 22.7891 23.1045 10.1584 12.4819 20.1050 15.4562 1.9451 0.2057 26.4951 22.1221 31.4847 8.9640 26.2418 18.1760 44.0356 13.5401 28.9836 25.9879 38.4722 20.1731 28.2694 29.0011 32.1910 5.8699 36.4863 29.7284 0.9718 28.1477 8.9586 24.6635 16.5618 23.6143 10.5597 15.1178 50.2111 10.2944 8.1519 9.5325 22.1075 18.5569 0.1215 18.8726 48.2077 16.8889 31.9499 17.6309 0.7732 0.4656 47.4134 23.7783 41.8671 3.5667 43.5474 3.9061 5
基于MATLAB的量子粒子群优化算法及其应用
基于MATLAB的量子粒子群优化算法及其应用
38 计算机与数字工程 第35卷
基于MATLAB的量子粒子群优化算法及其应用
余 健 郭 平
1)
2)
)
(韩山师范学院数信学院1) 潮州 521041)(北京师范大学信息科学学院2 北京 100875)
3
摘 要 量子粒子群优化(QPSO)算法是在经典的粒子群优化(PSO)算法的基础上所提出的一种具有量子行为的粒子群优化算法,具有高效的全局搜索能力。通过求解J.D.Schaffer,方法具有良好的收敛性和稳定性。
关键词 QPSO 量子 粒子群中图分类号 TP301.6
1 引言
是一种基于
,但,易陷入局部极值。孙俊等人在文献[4]中给出了具有量子行为的粒子群优化算法,即QPSO算法。该算法简单有效,收敛速度快,全局搜索性能远优于PSO算法。
点,最后收敛于Pbest点。因此,在整个过程中,在Pbest点处实际上存在某种形式的吸引势能场吸引着粒子,这正是整个粒子能保持聚集性的原因
[7]
。但在经典PSO算法中,粒子是在经
典力学的状态下沿着确定的轨迹飞行,因此粒子搜索的空间是一个有限的区域,因而不能保证一定找到全局最优解。
2 粒子群优化算法
PSO算法首先初始化一群随机粒子,
智能优化算法源代码
人工蚂蚁算法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x,y, minvalue] = AA(func)
% Example [x, y,minvalue] = AA('Foxhole') clc; tic;
subplot(2,2,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% plot 1 draw(func);
title([func, ' Function']); %初始化各参数
Ant=100;%蚂蚁规模 ECHO=200;%迭代次数
step=0.01*rand(1);%局部搜索时的步长 temp=[0,0]; %各子区间长度 start1=-100; end1=100; start2=-100; end2=100;
Len1=(end1-start1)/Ant; Len2=(end2-start2)/Ant; %P = 0.2;
%初始化蚂蚁位置
for i=1:Ant
智能优化算法源代码
人工蚂蚁算法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x,y, minvalue] = AA(func)
% Example [x, y,minvalue] = AA('Foxhole') clc; tic;
subplot(2,2,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% plot 1 draw(func);
title([func, ' Function']); %初始化各参数
Ant=100;%蚂蚁规模 ECHO=200;%迭代次数
step=0.01*rand(1);%局部搜索时的步长 temp=[0,0]; %各子区间长度 start1=-100; end1=100; start2=-100; end2=100;
Len1=(end1-start1)/Ant; Len2=(end2-start2)/Ant; %P = 0.2;
%初始化蚂蚁位置
for i=1:Ant
遗传算法的MATLAB程序实例
遗传算法的程序实例
f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码)
initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码:
%Name: initpop.m %初始化
function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));
% rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值
1、将二进制数转化为十进制数(1) 代码:
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop)
[px,py]=size(pop);
智能优化方法作业 - PSO算法
智能优化方法作业
PSO算法实验报告
课程名称: 智能优化方法 作者姓名: 专 业: 控制工程
目录
第一章 问题描述 ...................................................................................... 1 第二章 算法设计 ...................................................................................... 1
2.1解及目标函数的表达................................................................................ 1
2.1.1种群的编码............................................................................
使用MATLAB遗传算法工具实例(详细)
最新发布的MATLAB Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。
本章节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。
遗传算法与直接搜索工具箱概述
本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。
8.1.1 工具箱的特点
GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MATLAB数值计算环境的性能。遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算
使用MATLAB遗传算法工具实例(详细)
第八章 使用MATLAB遗传算法工具
最新发布的MATLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。
本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。
8.1 遗传算法与直接搜索工具箱概述
本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。
8.1.1 工具箱的特点
GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MATLAB数值计算环境的性能。遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化
基于智能优化算法的控制器优化设计
一、题目
基于粒子算法的控制器优化设计
二、指导思想和目的要求
1、利用已有的专业知识,培养学生解决实际工程问题的能力; 2、锻炼学生的科研工作能力和培养学生的团结合作攻关能力;
三、主要技术指标
1、熟悉掌握粒子群算法的基本原理; 2.对PID控制进行优化设计;
摘 要
粒子群算法是一种基于群体智能的启发式全局搜索算法,粒子群算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。
PID参数的寻优方法有很多种,各种方法都有各自的特点,应按照实际系统的特点选择适当的方法。本文主要研究基于粒子群算法的PID控制系统参数优化设计方法,主要工作如下:其一,选择被控对象,本文选取的控制对象为不稳定系统的传递函数,对控制系统进行仿真,并对结果进行分析。其二,根据粒子群算法的特点,设置算法中的相应参数,对PID的kp、ki、kd进行优化;其三,采用Simulink对优化后的控制系统进行仿真,得到系统优化后的响应曲线。通过对结果分析可知,将粒子群算法应用于PID参数优化设计是完全可行的。
关键词:PID控制,粒子群算法,优化设计,Si
粒子群优化算法介绍及matlab程序
粒子群优化算法(1)—粒子群优化算法简介
PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下:
当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下:
这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。
计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。
更新自己位置的公式就是粒子群