随机数生成原理

“随机数生成原理”相关的资料有哪些?“随机数生成原理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“随机数生成原理”相关范文大全或资料大全,欢迎大家分享。

随机数生成原理 实现方法 不同编程语言的随机数函数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1-0:Microsoft VC++产生随机数的原理:

Srand ( )和Rand( )函数。它本质上是利用线性同余法,y=ax+b(mod m)。其中a,b,m都是常数。因此rand的产生决定于x,x被称为Seed。Seed需要程序中设定,一般情况下取系统时间作为种子。它产生的随机数之间的相关性很小,取值范围是0—32767(int),即双字节(16位数),若用unsigned int 双字节是65535,四字节是4294967295,一般可以满足要求。

1-1: 线性同余法:

其中M是模数,A是乘数,C是增量,为初始值,当C=0时,称此算法为乘同余法;若C≠0,则称算法为混合同余法,当C取不为零的适当数值时,有一些优点,但优点并不突出,故常取C=0。模M大小是发生器周期长短的主要标志,常见有M为素数,取A为M的原根,则周期T=M-1。例如:

a=1220703125

a=32719 (程序中用此组数) a=16807 代码: void main( )

{

const int n=100;

double a=32719,m=1,f[n+1],g[n],seed; m

无周期伪随机数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

无周期伪随机数生成方法—素数的应用

郭 凤 鸣

(中国地质大学.武汉,430074)

摘要 混合同余法生成的伪随机数序列最大周期为M,改进的混合同余法生成的伪随机数序列最大周期扩大到(M-1)M。 无周期伪随机数生成方法解决了伪随机数生成的周期问题。

关键词 随机数,混合同余法,改进的混合同余法,素数 分类号: O29

A Generating method of cycle-free pseudorandom numbers-application of prime number

Guo Fengming

(China University of Geosciences,Wuhan 430074)

Abstract The maximum cycle of pseudorandom number sequence generated by mixed congruence method is M,The maximum cycle of pseudorandom number sequence generated by improved mixed congruence method is (M-1)M,the gener

C++获得随机数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

C++

Srand

Srand(**)用于生成随机数种子。Rand()用于利用种子来生成随机数。 srand函数是随机数发生器的初始化函数。 原型:void srand(unsigned seed);

用法:它需要提供一个种子,这个种子会对应一个随机数,如果使用相同的种子后面的rand()函数会出现一样的随机数。如: srand(1); 直接使用1来初始化种子。不过为了防止随机数每次重复常常使用系统时间来初始化,即使用 time函数来获得系统时间,它的返回值为从 00:00:00 GMT, January 1, 1970 到现在所持续的秒数,然后将time_t型数据转化为

(unsigned)型再传给srand函数,即: srand((unsigned) time(&t)); 还有一个经常用法,不需要定义time_t型t变量,即: srand((unsigned) time(NULL)); 直接传入一个空指针,因为你的程序中往往并不需要经过参数获得的t数据。srand((int)getpid()); 使用程序的ID(getpid())来作为初始化种子,在同一个程序中这个种子是固定的。

编辑本段例子

例1(C语言)

均匀随机数的产生

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

3.3.2 均匀随机数的产生

教材分析

本节内容是数学必修三第三章 概率 3.3.2均匀随机数的产生, 本节课在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用.

通过对本节课例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识。

课时分配

本节内容用1课时的时间完成,主要讲解利用计算器(计算机)产生均匀随机数的方法;利用均匀随机数解决具体的有关概率的问题。

教学目标

重 点: 掌握[0,1]上均匀随机数的产生及[a,b]上均匀随机数的产生。学会采用适当的随机模拟法去估算几何概率。

难 点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。

知识点:通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法。

能力点:利用均匀随机数解决具体的有关概率的问题,理解随机

汇编语言编写随机数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

汇编语言

1. 问题提出

有7位数,每一位是0-9自然数,只要按动一个键,就显示一位随机数,按动7次,显示出7个数值。

提示:每次收取的号码,显示到屏幕上,抽取结束后,用英文提示:END。 2. 题意分析

该题目为随机数输出,要求每按一次键盘,出现一个随机数,范围是0~9。首先需要写出随机数的程序,再让随机程序运行7次即可,并在运行满7次后自动输出字符“END”。 3. 程序框图

4.程序及结果 STACK

SEGMENT STACK

STACK ENDS DATA SEGMENT

DW 256 DUP(?)

MES DB 'END',0AH,0DH,'$' DATA ENDS CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START PROC FAR MOV AX,DATA

MOV DS,AX

MOV CX,7

LOOP1: KEY: SAHF MOV AH,0 LAHF MOV AH,0H INT 16H JZ KEY CALL RAND ADD BL,30H

fortran产生随机数方法介绍

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

fortran产生随机数方法介绍(附代码)

注意:现在计算机产生的随机数都是伪随机数。 1.0-1之间均匀分布的随机数

random_number(x) 产生一个0到1之间的随机数(x可以是向量),但是每次总是那几个数。

用了random_seed ()后,系统根据日期和时间随机地提供种子,使得随机数更随机了。 program random implicit none real :: x

call random_seed () ! 系统根据日期和时间随机地提供种子 call random_number (x) ! 每次的随机数就都不一样了 write(*,*) x stop

end program random 2.产生1-100的随机整数

subroutine my_random(abound,ubound) integer::abound,ubound,len,random

real::t

len=ubound-abound

call random_number(t)

random=abound+floor(t*(len+1))

return end sub

线性同余 产生伪随机数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

自己领悟把

一.计算机中随机数的产生

现在,在计算机,用来产生随机数的算法是“线性同余”法。所谓线性同余,其实就是下面两个式子。假设I就是一个随机数的序列,Ij+1与Ij的关系如下: Ij+1 =Ij * a+c (mod m) 或是Ij+1 =Ij *a (mod m),

其中,不妨取a=16807,m=2147483647,以为一常数。写个简单的程序就是: long r;

void scand( long v)//初始化随机种子数 { r = v; }

long rand()//产生随机数 {

r = (r*a + c)%m;//a,c,m为常数 return r; }

再看一下稍复杂一点的:(Random () 的 Borland 的实现) long long RandSeed = #### ; unsigned long Random(long max) {

long long x ; double i ;

unsigned long final ; x = 0xffffffff; x += 1 ;

RandSeed *= ((long long)134775813); RandSeed += 1 ;

RandSeed

均匀随机数的产生-梁玉成

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修三适用

3.3.2高一数学组2015年3月4日

高中数学必修三适用

学习目标: 1、了解均匀随机数的概念; 2、会用计算器(计算机)产生均匀随机数; 3、会利用均匀随机数等解决有关几何概型问 题。

高中数学必修三适用

复习回顾 1.几何概型的定义及其特点?

如果每个事件发生的概率只与构成该事件区 域的长度(面积或体积)成比例,则称这样的 概率模型为几何概率模型,简称为几何概型.

2.古典概型与几何概型的区别与联系.相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个; 几何概型要求基本事件有无限多个.

3.几何概型的概率公式.

构成事件A的区域长度(面积或体积) P(A)= 全部结果所构成的区域长度(面积或体积)

高中数学必修三适用

4、直线方程 2 2 a b 0 ax+by+c=0 ax+by+c>0表示什么?5、绝对值不等式 x a a x a; x a x a或x a

高中数学必修三适用

自主预习 阅读教材P137-140,回答下列问题: 1.均匀随机数 (1)定义 如果试验的结果是区间[a,b]上的任何一个实数,而且 出现任何一个实数是等可能的,则称这些实数为均匀随机 数.

FPGA产生基于LFSR的伪随机数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

FPGA产生基于LFSR的伪随机数

1.概念

通过一定的算法对事先选定的随机种子(seed)做一定的运算可以得到一组人工生成的周期序列,在这组序列中以相同的概率选取其中一个数字,该数字称作伪随机数,由于所选数字并不具有完全的随机性,但是从实用的角度而言,其随机程度已足够了。这里的“伪”的含义是,由于该随机数是按照一定算法模拟产生的,其结果是确定的,是可见的,因此并不是真正的随机数。伪随机数的选择是从随机种子开始的,所以为了保证每次得到的伪随机数都足够地“随机”,随机种子的选择就显得非常重要,如果随机种子一样,那么同一个随机数发生器产生的随机数也会一样。

2.由LFSR引出的产生方法

产生伪随机数的方法最常见的是利用一种线性反馈移位寄存器(LFSR),它是由n个D触发器和若干个异或门组成的,如下图:

其中,gn为反馈系数,取值只能为0或1,取为0时表明不存在该反馈之路,取为1时表明存在该反馈之路;n个D触发器最多可以提供2^n-1个状态(不包括全0的状态),为了保证这些状态没有重复,gn的选择必须满足一定的条件。下面以n=3,g0=1,g1=1,g2=0,g3=1为例,说明LFSR的特性,具有该参数的LFSR结构如下图:

假设在开始时,D2D1

任意分布的随机数的产生方法

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

任意分布的随机数的产生方法

摘要:

随机数在实际运用中非常之多,如游戏设计,信号处理,通常我们很容易得到平均分布的随机数。但如何根据平

均分布的随机数进而产生其它分布的随机数呢?本文提出了一种基于几何直观面积的方法,以正态分布随机数的产生为例讨论了任意分布的随机数的产生方法。

正文:

一、平均分布随机数的产生

大家都知道,随机数在各个方面都有很大的作用,在vc的环境下,为我们提供了库函数rand()来产生一个随机

的整数。该随机数是平均在0~RAND_MAX之间平均分布的,RAND_MAX是一个常量,在VC6.0环境下是这样定义的:

#define RAND_MAX 0x7fff

它是一个short 型数据的最大值,如果要产生一个浮点型的随机数,可以将rand()/1000.0这样就得到一个

0~32.767之间平均分布的随机浮点数。如果要使得范围大一点,那么可以通过产生几个随机数的线性组合来实现任意范围内的平均分布的随机数。例如要产生-1000~1000之间的精度为四位小数的平均分布的随机数可以这样来实现。先产生一个0到10000之间的随机整数。方法如下 :

int a = rand()000;

然后保留