高中数学公式总结大全

“高中数学公式总结大全”相关的资料有哪些?“高中数学公式总结大全”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学公式总结大全”相关范文大全或资料大全,欢迎大家分享。

高中数学公式大全

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8

高中数学公式大全

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8

高中数学公式大全(文科)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中文科数学公式

高中数学常用公式及常用结论

1. 元素与集合的关系

x A x CUA,x CUA x A.

2. 德摩根公式

CU(A B) CUA CUB;CU(A B) CUA CUB.

3. 包含关系

A B A A B B A B CUB CUA

A CUB CUA B R

4. 容斥原理

card(A B) cardA cardB card(A B)

card(A B C) cardA cardB cardC card(A B)

card(A B) card(B C) card(C A) card(A B C).

5. 集合{a1,a2, ,an}的子集个数共有2n 个;真子集有2n–1个;非空子集

有2n –1个;非空的真子集有2n–2个. 6. 二次函数的解析式的三种形式

① 一般式f(x) ax2 bx c(a 0); ② 顶点式f(x) a(x h)2 k(a 0); ③ 零点式f(x) a(x x1)(x x2)(a 0). 7. 解连不等式N f(x) M常有以下转化形式:

N f(x) M [f(x) M][f(x) N] 0

|f(x)

f(x) NM NM N

0 |

M f(x)22

11

.

f(x) NM N

高中文科数学公式

8.

高中数学公式大全(文科)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中文科数学公式

高中数学常用公式及常用结论

1. 元素与集合的关系

x A x CUA,x CUA x A.

2. 德摩根公式

CU(A B) CUA CUB;CU(A B) CUA CUB.

3. 包含关系

A B A A B B A B CUB CUA

A CUB CUA B R

4. 容斥原理

card(A B) cardA cardB card(A B)

card(A B C) cardA cardB cardC card(A B)

card(A B) card(B C) card(C A) card(A B C).

5. 集合{a1,a2, ,an}的子集个数共有2n 个;真子集有2n–1个;非空子集

有2n –1个;非空的真子集有2n–2个. 6. 二次函数的解析式的三种形式

① 一般式f(x) ax2 bx c(a 0); ② 顶点式f(x) a(x h)2 k(a 0); ③ 零点式f(x) a(x x1)(x x2)(a 0). 7. 解连不等式N f(x) M常有以下转化形式:

N f(x) M [f(x) M][f(x) N] 0

|f(x)

f(x) NM NM N

0 |

M f(x)22

11

.

f(x) NM N

高中文科数学公式

8.

高中数学公式大全(高考必备)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中数学公式大全(含初中常用公式)(高考必备)

1. 元素与集合的关系

U x A x C A ∈??,U x C A x A ∈??.

2.德摩根公式

();()U U U U U U C A B C A C B C A B C A C B ==.

3.包含关系

A B A A B B =?=U U A B C B C A ????

U A C B ?=ΦU C A B R ?=

4.容斥原理

()()card A B cardA cardB card A B =+-

()()card A B C cardA cardB cardC card A B =++-

()()()()card A B card B C card C A card A B C ---+.

5.集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.

6.二次函数的解析式的三种形式

(1)一般式2

()(0)f x ax bx c a =++≠;

(2)顶点式2()()(0)f x a x h k a =-+≠;

(3)零点式12()()()(0)f x a x x x x a =--≠.

7.解连不等式()N f x M

高中数学公式大全(必备版)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中数学公式及知识点速记

1、函数的单调性

(1)设1212[,],x x a b x x ∈<、且那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数;

],[)(0)()(21b a x f x f x f 在?>-上是减函数.

(2)设函数)(x f y =在某个区间内可导,

若0)(>'x f ,则)(x f 为增函数;

若0)(<'x f ,则)(x f 为减函数;

)

若()=0f x ',则)(x f 有极值。

2、函数的奇偶性

若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。 若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义

函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.

4、几种常见函数的导数

①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; 。

⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧x x 1)

高中数学公式大全高考必看

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中数学常用公式及常用结论大全

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB. 3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA ?A?CUB???CUA?B?R

2.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

3.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0).

4.充要条件

(1)充分条件:若p?q,则p是q充分条件. (2)必要条件:若q?p,则p是q必要条件.

(3)充要条件:若p?q,且q?p,则p是q充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

5.若将函数y?f(x)的图象右移a、上移b个单位,得到函数y?f(x?a)?b的图象;若将曲线f(x,y)?0的图象右移a、上移b个单位,得到曲线f(x?a,y?b)?0的图象. 6.分数指数幂

(1)amnnnnn?1nam1mn(a

高中数学公式大全150个

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中数学公式大全

(最全面,最详细)

高中数学公式大全 抛物线:y = ax *+ bx + c

就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y

一般用于求最大值与最小值 抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab

椭圆面积定理:椭圆的面积等于圆周率(

史上最全高中数学公式大全(附送高中数学公式提升_高考应试技巧)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

精品资料,高考必备!

高中数学常用公式及结论

海南省保亭中学 马军

1、 元素与集合的关系: x A x CUA; x CUA x A; ØA A

2、 集合{a1,a2, ,an}的子集个数共有2 个;真子集有2 1个;非空子集有2 1个;非空的真子 有2 2个.

3 、 二次函数的解析式的三种形式:

(1) 一般式f(x) ax2 bx c(a 0);

(2) 顶点式f(x) a(x h)2 k(a 0);(当已知抛物线的顶点坐标(h,k)时,设为此式) (3) 零点式f(x) a(x x1)(x x2)(a 0);

(当已知抛物线与x轴的交点坐标为(x1,0),(x2,0)时,设为此式) (4)切线式:f(x) a(x x0)2 (kx d),(a 0)。

(当已知抛物线与直线y kx d相切且切点的横坐标为x0时,设为此式)

4 、 真值表: 同真且真,同假或假 5

n

n

n

n

6.)

充要条件:(1)、p q,则P是q的充分条件,反之,q是p的必要条件;

(2)、p q,且q ≠> p,则P是q的充分不必要条件; (3)、p ≠> p ,且q p,则P是q的必要不充分条件; (4)、p ≠> p ,且q ≠> p,则P是q的既不充

高中数学公式大全(完美版)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

高中数学公式大全(完美版)

1.

,

.

2..

3.

4.集合的子集个数共有

个.

个;真子集有个;非空子集有

个;非空的真子集有

5.二次函数的解析式的三种形式 (1)一般式

;

(2)顶点式式 (3)零点式

时,设为此式

;当已知抛物线的顶点坐标时,设为此

;当已知抛物线与轴的交点坐标为

4切线式:

切且切点的横坐标为

时,设为此式

。当已知抛物线与直线相

6.解连不等式常有以下转化形式

.

1 / 49

7.方程在内有且只有一个实根,等价于

8.闭区间上的二次函数的最值

二次函数在闭区间上的最值只能在

处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则;

,,.

(2)当a<0时,若,则,

若,则,.

9.一元二次方程=0的实根分布

1方程在区间内有根的充要条件为或;

2方程在区间内有根的充要条件为

2 / 49

或或;

3方程在区间内有根的充要条件为或 .

10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间不等式

的子区间形如

不同上含参数的。

(为参数)恒成立的充要条件是

(2)在给定区间的充要条件是

的子区间上含参数的不等式

(为参数)恒成立

(3) 在给定区间解充要条件是

的子区间上含参数的不等式

(为参数)的有

(4) 在给