导数压轴题型归类
“导数压轴题型归类”相关的资料有哪些?“导数压轴题型归类”相关的范文有哪些?怎么写?下面是小编为您精心整理的“导数压轴题型归类”相关范文大全或资料大全,欢迎大家分享。
高三导数压轴题题型归纳()
导数压轴题题型
1. 高考命题回顾
x
例1已知函数f(x)=e-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
11xx0
(1)解 f(x)=e-ln(x+m)?f′(x)=e-?f′(0)=e-=0?m=1,
x+m0+mx1ex+-1
定义域为{x|x>-1},f′(x)=ex-=,
x+mx+1
显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.
1xx(2)证明 g(x)=e-ln(x+2),则g′(x)=e-(x>-2).
x+2
11xxh(x)=g′(x)=e-(x>-2)?h′(x)=e+>0,
x+2x+2
所以h(x)是增函数,h(x)=0至多只有一个实数根,
1111
又g′(-)=-<0,g′(0)=1->0,
22e3
2
?1?
所以h(x)=g′(x)=0的唯一实根在区间?-,0?内,
?2?
?1?1t设g′(x)=0的根为t,则有g′(t)=e-=0?- t+2?2? 1 所以,et=?t+2=e-t, t+2 当x∈(-2,t)时,g′(x) 1+t2t所以g(x)min=g(t)=e-ln(t+2)=+t=>
高三导数压轴题题型归纳
导数压轴题题型
1. 高考命题回顾
例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
11
(1)解 f(x)=ex-ln(x+m)?f′(x)=ex-?f′(0)=e0-=0?m=1,
x+m0+m
ex?x+1?-11x
定义域为{x|x>-1},f′(x)=e-=,
x+mx+1
显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.
1
(2)证明 g(x)=ex-ln(x+2),则g′(x)=ex-(x>-2).
x+2
11
h(x)=g′(x)=ex-(x>-2)?h′(x)=ex+>0,
x+2?x+2?2所以h(x)是增函数,h(x)=0至多只有一个实数根,
1111
又g′(-)=-<0,g′(0)=1->0,
22e3
2
1
-,0?内, 所以h(x)=g′(x)=0的唯一实根在区间??2?
11
- 1- 所以,et=?t+2=et, t+2 当x∈(-2,t)时,g′(x) ?1+t?21t 所以g(x)min=g(t)=e-ln(t+2)=+t=>0, t+2t+2 当m≤2时,有ln(x+m)≤ln(x
高三导数压轴题题型归纳()
导数压轴题题型
1. 高考命题回顾
x
例1已知函数f(x)=e-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
11xx0
(1)解 f(x)=e-ln(x+m)?f′(x)=e-?f′(0)=e-=0?m=1,
x+m0+mx1ex+-1
定义域为{x|x>-1},f′(x)=ex-=,
x+mx+1
显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.
1xx(2)证明 g(x)=e-ln(x+2),则g′(x)=e-(x>-2).
x+2
11xxh(x)=g′(x)=e-(x>-2)?h′(x)=e+>0,
x+2x+2
所以h(x)是增函数,h(x)=0至多只有一个实数根,
1111
又g′(-)=-<0,g′(0)=1->0,
22e3
2
?1?
所以h(x)=g′(x)=0的唯一实根在区间?-,0?内,
?2?
?1?1t设g′(x)=0的根为t,则有g′(t)=e-=0?- t+2?2? 1 所以,et=?t+2=e-t, t+2 当x∈(-2,t)时,g′(x) 1+t2t所以g(x)min=g(t)=e-ln(t+2)=+t=>
高三导数压轴题题型归纳2
第一章 导数及其应用
一, 导数的概念
lim1..已知f(x)?,则?x?0
f(2??x)?f(2)的值是( )
?x11A. ? B. 2 C. D. -2
44h?01x变式1:设f??3??4,则lim
A.-1
f?3?h??f?3?为( )
2hB.-2 C.-3
f?x0??x??f?x0?3?x?变式2:设f?x?在x0可导,则lim等于 ?x?0?x A.2f??x0?
B.f??x0?
C.3f??x0?
D.1
D.4f??x0?
( )
导数各种题型方法总结
请同学们高度重视:
首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法
5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在
其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类
原创高三导数压轴题题型归纳 - 图文
导数压轴题题型归纳
1. 高考命题回顾
例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
例2已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且
在点P处有相同的切线y=4x+2(2013全国新课标Ⅰ卷) (Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时, f(x)?kg(x),求k的取值范围。 例3已知函数f(x)满足f(x)?f'(1)ex?12. 在解题中常用的有关结论※
(1)曲线y?f(x)在x?x0处的切线的斜率等于f?(x0),且切线方程为y?f?(x0)(x?x0)?f(x0)。 f?(x0)?0。反之,不成立。 (2)若可导函数y?f(x)在 x?x0 处取得极值,则(3)对于可导函数f(x),不等式f?(x)?0??0?的解集决定函数f(x)的递增(减)区间。 ?0(?0)恒成立(f?(x) 不恒为(4)函数f(x)在区间I上递增(减)的充要条件是:?x?If?(x)0). (5)函数f(x)(非常量函数)在区间I上不单调等价于f(x
高考小说题型归类
高考小说题型归类
一、要点概括题
概括题解题基本要求
★认真审读题干,确定有效答题区域,在答题区域内梳理层次,采用摘要法、归纳法,摘取关键词语或语句做答。
★依据原文找依据,找答案。
★答题时注意根据要求分点答题,结合分值判断答题的要点数目,一般而言,3分的题目答三个要点,4分的题目答两个要点或四个小点,6分的题目一般答三个要点。
★找准陈述的对象,一般用主谓句的形式陈述,注意保持陈述角度及结构形式的一致。 ★概括力求简练、全面、准确,但也不能把简答题答成填空题。
1、概括小说故事情节
把握好故事情节,是读懂小说的关键,是欣赏小说艺术特点的基础,也是整体感知文章的起点。命题者在为小说命题时,也必定以此为出发点,先从整体上设置理解文章内容的试题。
情节概括主要有以下形式
①用一句话或简明的语句概括故事情节;
②文章写了哪几件事,请依次加以概括;
③概括小说的部分内容(包括指出开端、发展、高潮和结局四部分中的某一方面)。
【解题思路】
对这种题型,我们要牢记三点:一、对事件的概述,我们必须按照“何时何地何人做何事”的格式加以概括(材料本身未涉及的除外,尤其是“做何事”不能省),万不可粗枝大叶,丢失了本该有的要素;二、由于事件的复杂性,我们在概括时,要避免前后情节的相互交错;
高考导数压轴题解答
整理:beijingdaxue gaojiejack ◇导数专题
目 录
一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)
(一)作差证明不等式
(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式
四、不等式恒成立求字母范围 (51)
(一)恒成立之最值的直接应用 (二)恒成立之分离常数
(三)恒成立之讨论字母范围
五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)
七、导数结合三角函数 (85)
书中常用结论(zhongdianzhangwo) ⑴sinx?x,x?(0,?),变形即为点连线斜率小于1. ⑵ex?x?1 ⑶x?ln(x?1) ⑷lnx?x?ex,x?0.
sinx?1,其几何意义为y?sinx,x?(0,?)上的的点与原x一、导数单调性、极值、最值的直接应用
1. (切线)设函数f(x)?x2?a.
(1)当a?1时,求函数g(x)?xf(x)在区间[0,1]上的最小值; (2)当a?0时,曲线y?f(x)在点P(x1,f(x1))(x1?a)处的切线为l,l与x轴交于点A(x2,0)求证:x1?x2?a.
1
解:(1)a?1时,g(x
高考导数压轴题解答
整理:beijingdaxue gaojiejack ◇导数专题
目 录
一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)
(一)作差证明不等式
(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式
四、不等式恒成立求字母范围 (51)
(一)恒成立之最值的直接应用 (二)恒成立之分离常数
(三)恒成立之讨论字母范围
五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)
七、导数结合三角函数 (85)
书中常用结论(zhongdianzhangwo) ⑴sinx?x,x?(0,?),变形即为点连线斜率小于1. ⑵ex?x?1 ⑶x?ln(x?1) ⑷lnx?x?ex,x?0.
sinx?1,其几何意义为y?sinx,x?(0,?)上的的点与原x一、导数单调性、极值、最值的直接应用
1. (切线)设函数f(x)?x2?a.
(1)当a?1时,求函数g(x)?xf(x)在区间[0,1]上的最小值; (2)当a?0时,曲线y?f(x)在点P(x1,f(x1))(x1?a)处的切线为l,l与x轴交于点A(x2,0)求证:x1?x2?a.
1
解:(1)a?1时,g(x
2014高考导数压轴题-导数应用题
导数应用题
1. 某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t元(其中t为常数,且2≤t≤5),设该工厂每件玩具的出厂价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.
(1)求该工厂的日利润y(元)与每件玩具的出厂价x元的函数关系式;
(2)当每件玩具的日售价为多少元时,该工厂的利润y最大,并求y的最大值.
40解:(1)设日销售量为,则=10,∴k=10 e.则日销售量为,
.∴y=,其中35≤x≤41. ∴日利润y=(x-30-t)·
(2)y′=,令y′=0得x=31+t.
①当2≤t≤4时,33≤31+t≤35.∴当35≤x≤41时,y′≤0.
5∴当x=35时,y取最大值,最大值为10(5-t)e.
35<t+31≤36 ,t+31]上单调递增,②当4<t≤5时,函数y在[35,在[t+31,41]上单调递减.
9t∴当x=t+31时,y取最大值10e-.
∴当2≤t≤4时,x=35时,日利润最大值为10(5-t)e5元.
9t当4<t≤5时,x=31+t时,日利润最大值为10e-元.
2. 如图,ABCD是正方形空
高考导数常见题型汇总
1已知函数f(x) ax3 bx2 (c 3a 2b)x d的图象如图所示.
(I)求c,d的值;
(II)若函数f(x)在x 2处的切线方程为3x y 11 0,求函数f(x)的解析式;
(III)在(II)的条件下,函数y
f(x)与y
1
f (x) 5x m3
的图象有三个不同的交点,求m的取值范围.
2.已知函数f(x) alnx ax 3(a R).
(I)求函数f(x)的单调区间;
(II)函数f(x)的图象的在x 4处切线的斜率为
g(x)
13m
x x2[f'(x) ]在区间(1,3)上不是单调函数,求32
3
,若函数2
m的取值范围.
3.已知函数f(x) x3 ax2 bx c的图象经过坐标原点,且在x 1处取得极大值.
(I)求实数a的取值范围;
(2a 3)2
(II)若方程f(x) 恰好有两个不同的根,求f(x)的解析式;
9
(III)对于(II)中的函数f(x),对任意 、 R,求证: |f(2sin ) f(2sin )| 81.
4.已知常数a 0,e为自然对数的底数,函数f(x) ex x,g(x) x2 alnx.
(I)写出f(x)的单调递增区间,并证明ea a; (II)讨论函数y g(x)在区间(1,ea)上零点的个数.
5.已知函