高中数学三角函数思维导图

“高中数学三角函数思维导图”相关的资料有哪些?“高中数学三角函数思维导图”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学三角函数思维导图”相关范文大全或资料大全,欢迎大家分享。

高中数学三角函数任意角和弧度制

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高一数学辅导三角函数(一)

【任意角】

1、时间经过了6小时30分钟,则钟表的分针所转过的角的度数为 ,时针所转过的角的度数为 。

2、已知α=-18450

,在与α 终边相同的角中,最小的正角的度数为 ;最大的负角的度数为 。

3、若α 是第一象限角,则 α

2 终边所在的位置是 。

4、若α 是第一象限角,β 是第二象限角,试确定α+β

2终边所在的位置 。

5、已知集合A=﹛α︱α为小于900

的角﹜,B=﹛α︱α为第一象限的角﹜,则A∩B=( )

A. ﹛α︱α为锐角﹜ B. ﹛α︱α为小于900

的角﹜ C. ﹛α︱α为第一象限的角﹜ D.以上都不对

6、若α与β的终边互相垂直,则α-β= 。

7、已知角α,β的终边关于x+y=0对称,且α=-600

,则β= 。 8、已知角β的终边在直线??= 3??上。 (1)写出角β的集合S;

(2)写出S中适合不等式-3600<β<7

高中数学新课 三角函数 教案(37)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

课 题:小结与复习(4)

知识目标:

1任意角的三角函数、任意角的概念、弧度制、任意角的三角函数的概念、同角三角函数间的关系、诱导公式;

2两角和与差的三角函数、二倍角的三角函数; 3三角函数的图象和性质、已知三角函数值求角 教学目的:

1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算; 2掌握任意角的正弦、余弦、正切的定义,并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;

3掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;

4能正确运用三角公式,进行三角函数式的化简、求值及恒等式证明; 5会用与单位圆有关的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+?)的简图,理解A、ω、?的物

理意义;

6会用已知三角函数值求角,并会用符号arcsinx、arccosx、arctanx表示 教学重点:三角函数的知识网络结构及各部分知

高中数学必修4三角函数公式大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin

苏教版高中数学必修4三角函数复习(1)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学学习材料

金戈铁骑整理制作

三角函数复习(1)

一、复习目标:

1、 理解弧度的意义并能正确进行弧度与角度的换算;

2、 掌握任意角的三角函数的定义及符号法则,熟记某些特殊角的三角函数值。 3、 掌握同角三角函数的关系、诱导公式。 二、知识梳理:

?180?01、弧度制与角度制之间的换算公式是:1rad????57.3

???2、设?是一个任意角,?的终边上任意一点P?x,y?与原点的距离是rr?则 sin??0?x2?y2?0

?yxy,cos??,tan?? rrx223、 同角三角函数关系式

平方关系:sin??cos??1 商数关系:4、 诱导公式

sin??tan? cos???2k??k?Z?,??,???,2???的三角函数值,等于?同名函数值,前面加上一个把?看

成锐角时原函数值的符号。也可用“函数名不变,符号看象限”来帮助记忆。

三、基础训练:

1、 已知集合A={第一象限的角},B={锐角},C={小于90°的角},下列命题中,①A=B=C; ②

A?C; ③C?A; ④A?C =B; ⑤B?A。其中是正确命题的有 。 2、设P(x,2)是角α终边上一点

苏教版高中数学必修4三角函数复习(1)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学学习材料

金戈铁骑整理制作

三角函数复习(1)

一、复习目标:

1、 理解弧度的意义并能正确进行弧度与角度的换算;

2、 掌握任意角的三角函数的定义及符号法则,熟记某些特殊角的三角函数值。 3、 掌握同角三角函数的关系、诱导公式。 二、知识梳理:

?180?01、弧度制与角度制之间的换算公式是:1rad????57.3

???2、设?是一个任意角,?的终边上任意一点P?x,y?与原点的距离是rr?则 sin??0?x2?y2?0

?yxy,cos??,tan?? rrx223、 同角三角函数关系式

平方关系:sin??cos??1 商数关系:4、 诱导公式

sin??tan? cos???2k??k?Z?,??,???,2???的三角函数值,等于?同名函数值,前面加上一个把?看

成锐角时原函数值的符号。也可用“函数名不变,符号看象限”来帮助记忆。

三、基础训练:

1、 已知集合A={第一象限的角},B={锐角},C={小于90°的角},下列命题中,①A=B=C; ②

A?C; ③C?A; ④A?C =B; ⑤B?A。其中是正确命题的有 。 2、设P(x,2)是角α终边上一点

高中数学必修4任意角的三角函数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数更多资源 更多资源

习题,课外读物,学习资料,奥数,参考书,教材

角的范围已经推广,那么对任一角 α 是否也能像锐 角一样定义其四种三角函数呢? 我们已经学习过锐角三角函数,知道它们都是以锐角 α 为 自变量,以比值为函数值,定义了角α 的正弦、余弦、正 切、余切的三角函数,本节课我们研究当角α 是一个任意 角时,其三角函数的定义及其几何表示.

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数定义

设 α 是任意角,α 的终边上任意一点P 的坐标是 (x,y ) , 当角α 在第一、二、三、四象限时的情形,它与原点的距 离为 r ,则 r =x + y = x2 + y 2 > 02 2

.

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数所在象限的课件 定义: 定义:

y y ①比值 叫做α 的正弦,记作sin α ,即 sin α = . r r

x x ②比值 叫做α 的余弦,记作cosα ,即cos α = . r r y ③比值 叫做 α 的正切,记作tan α ,即 tan α = xy . x

习题,课外读物,学习资料,奥数,参考书,教材

提问:对于确定的角α

高中数学必修4任意角的三角函数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数更多资源 更多资源

习题,课外读物,学习资料,奥数,参考书,教材

角的范围已经推广,那么对任一角 α 是否也能像锐 角一样定义其四种三角函数呢? 我们已经学习过锐角三角函数,知道它们都是以锐角 α 为 自变量,以比值为函数值,定义了角α 的正弦、余弦、正 切、余切的三角函数,本节课我们研究当角α 是一个任意 角时,其三角函数的定义及其几何表示.

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数定义

设 α 是任意角,α 的终边上任意一点P 的坐标是 (x,y ) , 当角α 在第一、二、三、四象限时的情形,它与原点的距 离为 r ,则 r =x + y = x2 + y 2 > 02 2

.

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数所在象限的课件 定义: 定义:

y y ①比值 叫做α 的正弦,记作sin α ,即 sin α = . r r

x x ②比值 叫做α 的余弦,记作cosα ,即cos α = . r r y ③比值 叫做 α 的正切,记作tan α ,即 tan α = xy . x

习题,课外读物,学习资料,奥数,参考书,教材

提问:对于确定的角α

高中数学 第一章 三角函数 1.2 任意角的三角函数 1.2.1 任意角的

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1.2.1 任意角的三角函数

互动课堂

疏导引导

1.任意角三角函数的定义

设P(a,b)是角α的终边与单位圆的交点,由P向x轴引垂线,垂足为M. 根据锐角三角函数的定义得 sinα=

|MP||OM||MP|b?. =b,cosα==a,tanα=

|OP||OM|a|OP| 同样的道理 ,我们也可以利用单位圆来定义任意角的三角函数.如图1-2-2,设α是一

个任意角,它的终边与单位圆交于点P(x,y),那么

图1-2-2

(1)y叫做α的正弦,记作sinα,即sinα=y. (2)x叫做α的余弦,记作cosα,即cosα=x. (3)

yy叫做α的正切,记作tanα,即tanα=. xx2.三角函数线

设单位圆的圆心与坐标原点重合,则单位圆与x轴的交点分别为A(1,0)、A′(-1,0),与y轴的交点分别为B(0,1)、B′(0,-1).设角α的顶点在圆心O,始边与x轴的正半轴重合,终边与单位圆相交于点P(如图1-2-3(a)),过点P作PM垂直于x轴于M,则点M是点P在x轴上的正射影(简称射影),由三角函数的定义可知点P的坐标为(cosα,sinα),即P(cosα,sinα).

其中cosα=OM,sinα=MP

高中数学必修4三角函数测试题2

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一、选择题(每小题5分,共60分,请将所选答案填在括号内)

1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( )

A.B=A∩C B.B∪C=C C.A?C D.A=B=C

B.k?

( )

2.下列各组角中,终边相同的角是

A.

k??与k??22(k?Z) ??k与?33(k?Z)

6(k?Z)

C.(2k?1)?与(4k?1)? (k?Z) D.k???6与k???3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )

A.2

B.

2 sin1C.2sin1 D.sin2

( )

4.设?角的终边上一点P的坐标是(cos

A.

?,sin),则?等于 55B.cot??5

?5

C.2k??3?10(k?Z) D.2k? C. B.?D.?9??5(k?Z)

( )

5.将分针拨慢10分钟,则分钟转过的弧度数是

A.

? 3B.-

?3

?6 D.-

?6

( )

6.设角?和?的终边关于

A.?C.?y轴对称,则有

??2??(k?Z)

1?(2k?)???2(k?Z)

?2???|??(k?Z) ?(2k?

高中数学必修4三角函数测试题2

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一、选择题(每小题5分,共60分,请将所选答案填在括号内)

1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( )

A.B=A∩C B.B∪C=C C.A?C D.A=B=C

B.k?

( )

2.下列各组角中,终边相同的角是

A.

k??与k??22(k?Z) ??k与?33(k?Z)

6(k?Z)

C.(2k?1)?与(4k?1)? (k?Z) D.k???6与k???3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )

A.2

B.

2 sin1C.2sin1 D.sin2

( )

4.设?角的终边上一点P的坐标是(cos

A.

?,sin),则?等于 55B.cot??5

?5

C.2k??3?10(k?Z) D.2k? C. B.?D.?9??5(k?Z)

( )

5.将分针拨慢10分钟,则分钟转过的弧度数是

A.

? 3B.-

?3

?6 D.-

?6

( )

6.设角?和?的终边关于

A.?C.?y轴对称,则有

??2??(k?Z)

1?(2k?)???2(k?Z)

?2???|??(k?Z) ?(2k?