几何证明题的解题方法

“几何证明题的解题方法”相关的资料有哪些?“几何证明题的解题方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“几何证明题的解题方法”相关范文大全或资料大全,欢迎大家分享。

浅谈初中几何证明题的解题方法与基本技能

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

第2 7卷第 2期V0 1 . 27№ 2

雅安职业技术学院学报J 0I NAI OF YA A N VOC ATI ONAL COL LE(讵

2 0 1 3年 6月J u n e 2Ol 3

浅谈初中几何证明题的解题方法与基本技能舒月天全县初级中学,9) 1 l省雅安市天全县 6 2 5 5 0 0

初中阶段,学生学习数学都会遇到的难题是几何中的证明题。几何知识的学习建构,理解与逻辑论证都是初中学生很难突破的课题。下面,我将结合多年

分角 B A C,则立即用数字 1、2标注出两小角,并在草稿本上写出角 1=角2。

3 .在知识的归类中,我们可以逐渐发现上述所学

的教学经验和方法,谈谈初中几何证明题的解题方法与基本技能。一

习的定理、性质、推论等的用途基本上都不外乎用来证明:两条线段相等、两个角相等、两条线段 (或直线)平行、两个三角形全等 (或相似 ),或者一个图形是某些特殊的图形 (如平行四边形、菱形、矩形、正方形、等腰三角形、等边三角形、等腰梯形等 ) o比较常见的是前面的四种证明题类型。因此,学生在碰到相应类型的证明题时,头脑中就要有相应的定理、性质、推论的出现,而对于用哪一个或几个定理去解决问题,取决于证明题的需要。 三、查找“一级结

浅谈初中数学几何证明题解题方法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

浅谈初中数学几何证明题解题方法

内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程

关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线

初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。

学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构

初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,

初中几何证明题思路

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

学习总结:中考几何题证明思路总结

几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两角相等

1.两全等三角形

初中几何证明题思路

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

学习总结:中考几何题证明思路总结

几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两角相等

1.两全等三角形

初中几何证明题思路

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

学习总结:中考几何题证明思路总结

几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两角相等

1.两全等三角形

立体几何证明题归类

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

空间直线、平面的平行与垂直问题

一、“线线平行”与“线面平行”的转化问题,“线面平行”与“面面平行”的转

化问题 知识点:

一)位置关系:平行:没有公共点.

相交:至少有一个公共点,必有一条公共直线,公共点都在公共直线上. 相交包括垂直相交和斜交.

二)平行的判定:

(1)定义:没有公共点的两个平面平行.(常用于反证)

(2)判定定理:若一个平面内的两条相交直线平行于另一平面,则这两个平面平行.(线面平行得面面平行)

(3)垂直于同一条直线的两个平面平行.(4)平行于同一个平面的两个平面平行.

(5)过已知平面外一点作这个平面的平行平面有且只有一个.三)平行的性质:

定义:两个平行平面没有公共点.(常用于反证)

性质定理一:若一个平面与两个平行平面都相交,则两交线平行.(面面平行得线线平行,用于判定两直线平行)性质定理二:两个平行平面中的一个平面内的所有直线平行于另一个平面.(面面平行得线面平行,用于判定线面平行)

一条直线垂直于两个平行平面中的一个平面,必垂直于另一个平面.(用来判定直线与平面垂直)

一般地,一条直线与两个平行平面所成的角相等,但反之不然.

夹在两个平行平面间的平行线段相等.特别地,两个平行平面间的距离处处相等.

(1)(2)(3)(4)(5)二、

初中证明题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

第1篇:初中数学证明题

1.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.

2.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC。求证:AE=BE。

.3.如图,△ABC中,AD

平分∠BAC,BP⊥AD于P,AB=5,BP=2,AC=9。求证:∠ABP=2∠ACB。

B 图1 P B C

4.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.

15.点D、E在△ABC的边BC上,AB=AC,AD=AE 求证:BD=CE

6.△ABC中,AB=AC,PB=PC.求证:AD⊥

BC A B D E C

7.已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:

HB=HC

8 如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F.求证:△AEF为等腰三角

形.9.如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,

直线BM、CN交于点F。

(1) 求证:AN=BM;

(2) 求证:△CEF是等边三角形

A

10 如图,△ABC中,D在BC延长线上,且AC=CD,CE

高中数学立体几何证明题汇总

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

新课标立体几何证明题汇总

1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形

(2) 若BD=23,AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。

A B

F C

G D

E H

证明:在?ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH?同理,FG//BD,FG?(2) 90° 30 °

考点:证平行(利用三角形中位线),异面直线所成的角

1BD 21BD∴EH//FG,EH?FG∴四边形EFGH是平行四边形。 22、如图,已知空间四边形ABCD中,BC?AC,AD?BD,E是AB的中点。 求证:(1)AB?平面CDE;

(2)平面CDE?平面ABC。

A E

BC?AC?证明:(1)??CE?AB

AE?BE?同理,

AD?BD???DE?AB

AE?BE?B

C

又∵CE?DE?E ∴AB?平面CDE (2)由(1)有AB?平面CDE

又∵AB?平面ABC, ∴平面CDE?平面ABC 考点:线面垂直,面面垂直的判定

D

3、如图,在正方体ABCD?A1B1C1D1中,E是AA1的中点,

轴对称证明题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

轴对称

一.选择题(共6小题) 1.(2014?贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( ) 4 A.B. C. D.5

第1题 第2题 第3题 2.(2012?毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是( ) 2 4 A.B. C. D. 2 4 3.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( ) 10 8 5 2.5 A.B. C. D. 4.(2012?铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( ) 6 7 8 9 A.B. C. D.

轴对称证明题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

轴对称

一.选择题(共6小题) 1.(2014?贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( ) 4 A.B. C. D.5

第1题 第2题 第3题 2.(2012?毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是( ) 2 4 A.B. C. D. 2 4 3.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( ) 10 8 5 2.5 A.B. C. D. 4.(2012?铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( ) 6 7 8 9 A.B. C. D.