旋转变换矩阵
“旋转变换矩阵”相关的资料有哪些?“旋转变换矩阵”相关的范文有哪些?怎么写?下面是小编为您精心整理的“旋转变换矩阵”相关范文大全或资料大全,欢迎大家分享。
旋转变换练习
一、“等边旋转”
例一、如图,四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=2 (1)以线段BD,AB,BC作为三角形的三边,①则这个三角形为 三角形(填锐角、直角、钝角)②求BD边所对的角的度数。 (2)求四边形ABCD的面积。例一.gsp
二、利用特殊图形的主要线段寻找旋转
例二、在等腰直角△ABC中,D是AB的中点,∠EDF=90°,求证:DE=DF例二.gsp
三、“半角”问题
例三、如图17、18是两个相似比为1:2 的等腰直角△DMN和△ABC,将这两个三角形如图19放置,△DMN的斜边MN与△ABC的一直角边AC重合
(1) 在图19中,绕点D旋转△DMN,使两直角边DM、DN分别于AC、BC交于点E、
F,如图20,求证:AE?BF?EF 例三(1).gsp
(2) 在19图中,绕点C旋转△DMN,使它的斜边CM、直角边CD的延长线分别与AB
交于点E、F,如图21,此时结论AE?BF?EF是否仍然成立?若成立,请给
出证明;若不成立,请说明理由。例三(2).gsp
(3) 如图22,在正方形ABCD中,E、F分别是BC、CD上的点且满足△CEF的周长等
于正方
旋转变换复习
期中复习——旋转
初三数学期中复习——旋转
班级_______姓名_______学号________
基本知识梳理:
1.在平面内,把一个图形绕着 转动 的图形变换叫做 .点O叫
做 ,转动的角叫做 .
2.确定图形旋转的要素是: ; ; . 3.旋转前、后的图形具有的性质:
(1)对应点到旋转中心的 .(2)对应点与旋转中心所连线段的夹角等于 . (3)旋转前、后的图形 . 4.中心对称和中心对称图形 5.【方法总结】
(1)只要图形中存在有公共端点的等线段,就可能形成旋转型问题.
(2)当旋转角是60°时,作一个图形旋转后的图形存在等边三角形;当旋转角是90°时,存在等腰直角三角形. 反之,如果图形中存在两个等边三角形或两个等腰直角三角形或两个正方形,可以从图形旋转的角度分析图形关系.
简言之,遇中点,旋180度,构造中心对称;遇90度,旋90度,造垂直;遇60度,旋60度,造等边;遇等腰,旋顶角。但也不能思维定势,有时也可以通过轴对称、平移或辅助圆等方法解决问
初中数学图形的旋转变换培优综合训练题(附答案)
初中数学图形的旋转变换培优综合训练题(附答案)
一.解答题(共8小题)
1.如图,直角边长为6的等腰Rt△ABC中,点D、E分别在直角边AC、BC上,DE∥AB,EC=4.
(1)如图1,将△DEC沿射线AC方向平移,得到△D1E1C1,边D1E1与BC的交点为M,连接BE1,当CC1多大时,△BME1是等腰直角三角形?并说明理由.
(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D1E1C,连接AD
1、BE1、边D1E1的中点为F.
①在旋转过程中,AD1和BE1有怎样的数量关系?并说明理由;
②连接BF,当BF最大时,求AD1的值.(结果保留根号)
2.如图1,正△ABC中,点D为BC边的中点,将∠ACB绕点C顺时针旋转α角度(0°<α<60°)得∠A'CB',点P为线段A′C上的一点,连接PD与B′C、AC分别交点点
E、F,且∠P AC=∠EDC.
(1)求证:AP=2ED;
(2)猜想P A和PC的位置关系,并说明理由;
(3)如图2,连接AD交B'C于点G,若AP=2,PC=4,求AG的长.
3.如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=
矩阵与变换
b11 (1)行矩阵[a11 a12]与列矩阵 b 的乘法规则: 21
b11 [a11 a12] b21 a11a12 x0 的乘法规则: (2)二阶矩阵 与列向量 a21a22 y0
a11 a12 x0 = a11×x0+a12×y0 . a21a22 y0 a21×x0+a22×y0
(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:
a11 a12 b11 b12 = a21a22 b21b22
a11×b11+a12×b21a11×b12+a12×b22 a21×b11+a22×b21 a21×b12+a22×b22
(4)(AB)C=A(BC),AB≠BA,由AB=AC不一定能推出B=C.
一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算.
2.常见的平面变换 恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换六个变换.
3.逆变换与逆矩阵
(1)对于二阶矩阵A、B,若有AB=BA=E,则称AB称为A
(2)若二阶矩阵A、B均存在逆矩阵,则AB
全国中考数学试题分类解析汇总 专题54图形的旋转变换
全国181套中考数学试题分类解析汇编
专题54:图形的旋转变换
一、选择题
1.(浙江湖州3分)如图,△AOB是正三角形,OC⊥OB,OC=OB,将△AOB 绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转角度是
A.150o B.120o C.90o D.60o 【答案】A。
【考点】旋转的性质,等边三角形的性质,等腰直角三角形的性质。
【分析】由题意,∠AOC就是旋转角,根据等边三角形每个角都是60°的性质和OC⊥OB,即可求得旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°。故选A。
2.(浙江宁波3分)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△绕 边AB所在直线旋转一周,则所得几何体的表面积为
(A)4? (B)42? (C)8? (D)82? 【答案】D。
【考点】圆锥的计算,勾股定理,
【分析】所得几何体的表面积为2个底面半径为2,母线长为22的圆锥侧面积的和:
∵Rt△ABC中,∠ACB=90°,AC=BC=22,∴AB=∴所得圆锥底面半径为2,
∴几何体的表面积
1.2 线性变换及其矩阵
线性变换及其矩阵
§1.2 线性变换及其矩阵
在讲线性空间之前我们说:“空间”是定义一些结构的能够容纳运动的对象集合,而变换则规定了对应空间的运动。由于变换的存在使得线性空间研究由静态的量的研究转化为了动态的元素之间关系的研究。那么,线性空间中的变换是如何定义的呢?它的实质又是什么呢?在本节中,我们将主要解决这一问题。
在开始定义线性变换之前,我们首先来回顾一下线性系统的定义: 线性系统的一个基本特征就是其模型方程具有线性属性即满足叠加原理。叠加原理是说:若线性系统的数学描述T(T看作是信号空间上的变换),则对任意两个输入信号x和y以及任意两个非零常数c1和c2,下述关系式满足:
部请勿
一、 线性变换
资
下面,我们给出一般线性空间上的线性变换的定义
料
T(c1x+c2y)=c1Tx+c2Ty
1. 线性变换及其性质
内
设V是数域K上的线性空间, T是V上的变换,若T满足:对
x,y∈V, k,l∈K,T(kx+ly)=k(Tx)+l(Ty),则称T是V上的线性变换。
那么线性变换具有什么性质呢?我们来看一下。 线性变换的性质:
(1) Tθ=T(0x+0y)=0(Tx)+0(Ty)=θ
(2) T( x)=T(( 1)x+0y)=( 1)(Tx)+0(T
选修4-2 矩阵与变换
选修4-2 矩阵与变换
第1课时 线性变换、二阶矩阵及其乘法(对应学生用书(理)185~187页)
掌握恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等常见的线性变换的几何表示及其几何意义.
?x+2yx+3y??3
1. 已知A=??,B=?
?a ?x-yx+y?
x+2y=3,
4?
掌握恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等常见的线性变换的几何表示及其几何意义,并能应用这几种常见的线性变换进行解题.
b?
?,若A=B,求ax+by的值.
??x+3y=4,
解:∵ A=B,∴ ?∴ x=1,y=1,a=0,b=2,则ax+by=0+2=2.
x-y=a,??x+y=b,
2. 点(-1,k)在伸压变换矩阵?值.
解:?
?-m=-2,?m=2,??m0??-1?=?-2?,?
?? 解得 ?????
?01?? k??-4???k=-4.k=-4.??
?m0?之下的对应点的坐标为(-2,-4),求m、k的
?
?01?
3. 已知变换T是将平面内图形投影到直线y=2x上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y=2x上,即是将图形上任意一点(x,y)通过矩阵M作
?a=1,?a0??x?=?x?
矩阵的初等变换及其应用
石家庄经济学院本科生毕业论文
摘 要
在数学中矩阵最早来源于方程组的系数及常数所构成的方阵,现在矩阵是线性代数最基本也是最重要的概念之一。在线性代数及其许多的问题中都能看到矩阵的身影,它能把抽象的问题用矩阵表示出来,通过对矩阵进行计算得出结果。作为矩阵的基础及核心,矩阵的初等变换及应用是非常重要的,它能够把各种复杂的矩阵转化成我们需要的矩阵形式,从而使计算变得更加的简便。
本文总结了线性变换在线性代数、初等数论、通信、经济、生物遗传等方面的应用。
关键词:矩阵;初等变换;标准型;逆矩阵;标准型;秩;方程组
ABSTRACT
Matrix derived from the first phalanx of the coefficients and constants of the equations in mathematics, now matrix is the most fundamental and important concepts of linear algebra, in linear algebra and many other questions can be seen the figure of the matri
2018届苏教版 14.2矩阵与变换
1 ?1.已知A=??6
5?2?
?,求A的特征值.
?λ-1 -5?
解 A的特征多项式f(λ)=??
? -6 λ-2?
=(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A的特征值为λ1=7,λ2=-4. 故A的特征值为7和-4.
?1 -1?1 2-2?,求矩阵AB. -2?,矩阵B的逆矩阵B1=?2.(2016·江苏)已知矩阵A=?0?????0 2?
1
1
221
4 --
解 B=(B1)1=22=.
1
010
2 22
????????????????1 2?
∴AB=??·
?0 -2??
3.已知矩阵M=?
5???1
=?4?. ???1
?0 -1?0 ?2?1
14
?1 ?3 ?1?,β=? 0?,求M(2α+4β). ,α=?????
?2?4??-3?
2?
?2?? 0?=? 2?,
解 2α+4β=??+????
?4??-12??-8?
M(2α+4β)=?
?1 ?3
2?? 2??-14????=??. 4??-8??-26?
1??4.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是??,求矩阵A. ?1?
解 设A=?
?a ?c
d?
b?
?,由?
?a ?c ?2?, =?????
矩阵的初等变换及其应用
矩阵的初等变换及其应用
王丹
矩阵的初等变换及其应用
摘 要
矩阵的初等变换是研究矩阵的一种重要手段,是线性代数中应用的核心。本文简单介绍了与矩阵相关的一些概念和性质,以此为基础,求矩阵的秩、判断矩阵是否可逆后求逆矩阵、求方程组的基础解系、求特征值和特征向量、化二次型为标准形等等,并举例说明矩阵的初等变换在以上的应用中是如何发挥作用的。
关键词:矩阵,初等变换,应用
The elementary transformation of matrix and its applications
Abstract
Elementary transformation matrix is an important means of Matrix is the core linear algebra applications. This article briefly describes some of the concepts and properties associated with the matrix as a basis, the rank of a matrix to determine whether a matrix is reversible after