二次函数经典例题20题
“二次函数经典例题20题”相关的资料有哪些?“二次函数经典例题20题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数经典例题20题”相关范文大全或资料大全,欢迎大家分享。
二次函数最值经典例题收录
二次函数最值问题 专题 第 4 讲
一、兴趣导入(Topic-in): 二、学前测试(Testing):
重点梳理: 1、二次函数一般形式为:y?ax2?bx?c (a?0) 顶点式为: 。 2、结合二次函数y?ax2?bx?c (a?0)的图像可知: 当x满足 时,y随着x的增大而增大; 当x满足 时,y随着x的增大而减小。
3、数形结合讨论最值问题, 1)在X取任意实数时有: ?当a?0时,图像开口 ,函数在x?处取得最小值为,无最大值;
?当a?0时,图像开口 ,函数在x?处取得最大值为,无最小值.
2)函数中m?x?n时有: ?当a?0时,数形结合分类讨论函数的最值问题: 1)当m??
最大值为 。 2)当?
最大值为 。 3)当n??
最大值为
课本23题二次函数
二次函数课本改编总汇
武汉市光谷实验中学九年级数学组 主讲:颜永洪
一、根据图象建模
23.1(九下P10例4)要在一个圆形广场中央修建一个音乐喷泉,在广场中央竖直安装一根水管,
在水管的顶端安一个喷水头,使喷出的抛物线水柱在与广场中央的水平距离为1m处达到最高,且最高为3m,水柱落地处离广场中央3m,建立如图所示的直角坐标系, y(1)求抛物线的解析式
(2)问水管应多长?
3(3)当音乐喷泉开始喷水时,在广场中央有一身高为1.5米的男孩未及时跑到喷泉外, 问该男孩离广场中央的距离m的范围为多少时,才不会淋湿衣裳。 O13
23.2(九下P10例4改)某公园在一个圆心角为1200的扇形OEF的草坪上的圆心O处竖一根垂直的柱子OA,在A处安装一个自动喷水装置,水流在各个方向上沿形状相同的抛物线落下,
10
且水柱恰好落在草坪的边缘,下图分别是主视图和俯视图,若OA= 米,喷出的水流在距O
3水平距离为2米的地方到达最高点B,且B距地面距离为6米, (1)建立如图所示的直角坐标系,求抛物线的解析式 (2)扇形草坪的半径OE的长
(3)若在△OEF中再造一个矩形花坛MNGH,使G,H在OE,OF上,M,N在EF上,问
中考二次函数经典习题课
中考二次函数经 典习题课
二次函数考点 1、二次函数的定义 2、二次函数的图像及性质 3、求解析式的三种方法 4、a,b,c符号的确定 5、抛物线的平移法则 6二次函数与一元二次方程的关系 7二次函数的综合运用
1、二次函数的定义 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a≠0) 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式 练习:1、y=-x² ,y=2x² -2/x,y=100-5 x² ,y=3 x² -2x³ +5,其中是二次函数的有____个。 2.当m_______时,函数y=(m+1)χ 是二次函数?m2 m
- 2χ+1
2、二次函数的图像及性质y 0(0,c)
(0,c)
y
b 4ac b 2 2a , 4a
x b 4ac b 2 2a , 4a
0
x
抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值
y=ax2+bx+c(a>0) b 4ac b 2 2a , 4a b 直
二次函数实际应用题
1.(10贵阳)某商场以每件50元的价格购进一种商品,销售中发现 这种商品每天的销售量m(件)与每件的销售价x(元) 满足一次函数,其图象如图所示.
(1)每天的销售数量m(件)与每件的销售价格x(元) 的函数表达式是 .
x)元
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?
2.(10包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数
y kx b,且x 65时,y 55;
x 75时,y 45.
(1)求一次函数
y kx b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
3.( 08 河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为
(吨)时,所需的全部费用
,
(万元)与
满足关系式
,投入市场
后当年
二次函数实际应用题
1.(10贵阳)某商场以每件50元的价格购进一种商品,销售中发现 这种商品每天的销售量m(件)与每件的销售价x(元) 满足一次函数,其图象如图所示.
(1)每天的销售数量m(件)与每件的销售价格x(元) 的函数表达式是 .
x)元
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?
2.(10包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数
y kx b,且x 65时,y 55;
x 75时,y 45.
(1)求一次函数
y kx b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
3.( 08 河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为
(吨)时,所需的全部费用
,
(万元)与
满足关系式
,投入市场
后当年
二次函数 章末检测题
《二次函数》章末检测题
(时间:120分钟 满分:150分)
班级: ;姓名:
一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.(2011北京市)抛物线y=x-6x+5的顶点坐标为( A ) A.(3,-4) B.(3,4)
2
C.(-3,-4) D.(-3,4)
2.(2011聊城市)下列四个表示函数的图象中,当x<0时,函数值y随自变量x的增大而减小的是( D )
A.
B.
C.
D.
2
3.(2012广州市)将二次函数y=x的图象向下平移一个单位,则平移以后的二次函数的解析式为( A )
22
A.y=x-1 B.y=x+1
C.y=(x-1) D.y=(x+1)
4.(2012株洲市)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点
2
2
坐标是( A )
A.(-3,0) B.(-2,0) C.x=-3
D.x=-2
5. (2012巴中市)对于二次函数y=2(x+1)(x-3),下列说法正确的是( C ) A. 图象的开口向下
B. 当x>1时,y随x的增大而减小 C. 当x<1时,y随x的增大而减小 D. 图象的对称轴是直线x=-1
6.(2012
二次函数中高档题
二次函数中档题 一、选择题
1.抛物线y??x?2??3可以由抛物线y?x平移得到,则下列平移过程正确的是( )
22A.先向左平移2个单位,再向上平移3个单位 。B.先向左平移2个单位,再向下平移3个单位 C.先向右平移2个单位,再向下平移3个单位 。 D.先向右平移2个单位,再向上平移3个单位
2?x?1?1?x≤3????2.已知函数y??,则使y=k成立的x值恰好有三个,则k的值为( )
2???x?5??1?x>3?A.0 B.1
2C.2 D.3
3.如图为抛物线y?ax?bx?c的图像,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正
确的是( ) A.a+b=-1 B. a-b=-1 C. b<2a D. ac<0
4.若二次函数y=ax+bx+c的x与y的部分对应值如下表:
2
X y
-7 -27
-6 -13
-5 -3
-4 3
-3 5
-2 3
则当x=1时,y的值为
A.5 B.-3 C.-13 D.-27
25.如图所示的二次函数y
二次函数经典解答题及答案 (1)
二次函数经典解答题
1.如图,抛物线y=ax2+bx的对称轴为y 轴,且经过点(,),P为抛物线上一点,A (0,).
(1)求抛物线解析式;
(2)Q为直线AP上一点,且满足AQ=2AP.当P运动时,Q在某个函数图象上运动,试写出Q点所在函数的解析式;
(3)如图2,以P A为半径作⊙P与x轴分别交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求点P的横坐标.
【分析】(1)抛物线y=ax2+bx的对称轴为y轴,则b=0,将点(,),代入y=ax2,即可求解;
(2)分点Q在点P下方(点Q位置)、点Q在点P上方(点Q′位置),两种情况分别求解;
(3)分AM=AN、AM=MN、AN=MN,三种情况分别求解.
【解答】解:(1)抛物线y=ax2+bx的对称轴为y轴,则b=0,
将点(,),代入y=ax2并解得:a =,
故抛物线的表达式为:y =x2;
(2)设点Q的坐标为(x,y),点P(m ,m2),
①当点Q在点P下方时(点Q位置),
∵AQ=2AP,
∴P为AQ的中点,
第1 页共3 页
由中点公式得:m =x ,m2=,
整理得:y =x2﹣;
②当点Q在点P上方时(点Q′位置),
同理可得:y =﹣x2+;
Q点所在函数的解析式为:y =
一次函数经典例题大全
一. 定义型 例1. 已知函数解:由一次函数定义知
是一次函数,求其解析式。
,
,故一次函数的解析式为y=-6x+3。
注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型
例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。
解: 一次函数 的图像过点(2, -1),
,即k=1。故这个一次函数的解析式为y=x-3。
变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型
例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。
解:设一次函数解析式为y=kx+b,由题意得
,
四. 图像型
故这个一次函数的解析式为y=2x+4
例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为y=kx+b由图可知一次函数 的图像过点(1, 0)、(0, 2)
有
五. 斜截型
故这个一次函数的解析式为y=-2x+2
例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上
二次函数应用题及压轴题
二次函数应用题及压轴题
1.(2014?眉山)“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱. (1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元? (2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高? 2.(2014?台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.
(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;
(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本). ①求w关于x的函数关系式;
②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?
(3