二次函数经典例题20题

“二次函数经典例题20题”相关的资料有哪些?“二次函数经典例题20题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数经典例题20题”相关范文大全或资料大全,欢迎大家分享。

二次函数最值经典例题收录

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数最值问题 专题 第 4 讲

一、兴趣导入(Topic-in): 二、学前测试(Testing):

重点梳理: 1、二次函数一般形式为:y?ax2?bx?c (a?0) 顶点式为: 。 2、结合二次函数y?ax2?bx?c (a?0)的图像可知: 当x满足 时,y随着x的增大而增大; 当x满足 时,y随着x的增大而减小。

3、数形结合讨论最值问题, 1)在X取任意实数时有: ?当a?0时,图像开口 ,函数在x?处取得最小值为,无最大值;

?当a?0时,图像开口 ,函数在x?处取得最大值为,无最小值.

2)函数中m?x?n时有: ?当a?0时,数形结合分类讨论函数的最值问题: 1)当m??

最大值为 。 2)当?

最大值为 。 3)当n??

最大值为

课本23题二次函数

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数课本改编总汇

武汉市光谷实验中学九年级数学组 主讲:颜永洪

一、根据图象建模

23.1(九下P10例4)要在一个圆形广场中央修建一个音乐喷泉,在广场中央竖直安装一根水管,

在水管的顶端安一个喷水头,使喷出的抛物线水柱在与广场中央的水平距离为1m处达到最高,且最高为3m,水柱落地处离广场中央3m,建立如图所示的直角坐标系, y(1)求抛物线的解析式

(2)问水管应多长?

3(3)当音乐喷泉开始喷水时,在广场中央有一身高为1.5米的男孩未及时跑到喷泉外, 问该男孩离广场中央的距离m的范围为多少时,才不会淋湿衣裳。 O13

23.2(九下P10例4改)某公园在一个圆心角为1200的扇形OEF的草坪上的圆心O处竖一根垂直的柱子OA,在A处安装一个自动喷水装置,水流在各个方向上沿形状相同的抛物线落下,

10

且水柱恰好落在草坪的边缘,下图分别是主视图和俯视图,若OA= 米,喷出的水流在距O

3水平距离为2米的地方到达最高点B,且B距地面距离为6米, (1)建立如图所示的直角坐标系,求抛物线的解析式 (2)扇形草坪的半径OE的长

(3)若在△OEF中再造一个矩形花坛MNGH,使G,H在OE,OF上,M,N在EF上,问

中考二次函数经典习题课

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

中考二次函数经 典习题课

二次函数考点 1、二次函数的定义 2、二次函数的图像及性质 3、求解析式的三种方法 4、a,b,c符号的确定 5、抛物线的平移法则 6二次函数与一元二次方程的关系 7二次函数的综合运用

1、二次函数的定义 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a≠0) 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式 练习:1、y=-x² ,y=2x² -2/x,y=100-5 x² ,y=3 x² -2x³ +5,其中是二次函数的有____个。 2.当m_______时,函数y=(m+1)χ 是二次函数?m2 m

- 2χ+1

2、二次函数的图像及性质y 0(0,c)

(0,c)

y

b 4ac b 2 2a , 4a

x b 4ac b 2 2a , 4a

0

x

抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值

y=ax2+bx+c(a>0) b 4ac b 2 2a , 4a b 直

二次函数实际应用题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

1.(10贵阳)某商场以每件50元的价格购进一种商品,销售中发现 这种商品每天的销售量m(件)与每件的销售价x(元) 满足一次函数,其图象如图所示.

(1)每天的销售数量m(件)与每件的销售价格x(元) 的函数表达式是 .

x)元

(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x

(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?

2.(10包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数

y kx b,且x 65时,y 55;

x 75时,y 45.

(1)求一次函数

y kx b的表达式;

(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

(3)若该商场获得利润不低于500元,试确定销售单价x的范围.

3.( 08 河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为

(吨)时,所需的全部费用

(万元)与

满足关系式

,投入市场

后当年

二次函数实际应用题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

1.(10贵阳)某商场以每件50元的价格购进一种商品,销售中发现 这种商品每天的销售量m(件)与每件的销售价x(元) 满足一次函数,其图象如图所示.

(1)每天的销售数量m(件)与每件的销售价格x(元) 的函数表达式是 .

x)元

(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x

(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?

2.(10包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数

y kx b,且x 65时,y 55;

x 75时,y 45.

(1)求一次函数

y kx b的表达式;

(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

(3)若该商场获得利润不低于500元,试确定销售单价x的范围.

3.( 08 河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为

(吨)时,所需的全部费用

(万元)与

满足关系式

,投入市场

后当年

二次函数 章末检测题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

《二次函数》章末检测题

(时间:120分钟 满分:150分)

班级: ;姓名:

一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.(2011北京市)抛物线y=x-6x+5的顶点坐标为( A ) A.(3,-4) B.(3,4)

2

C.(-3,-4) D.(-3,4)

2.(2011聊城市)下列四个表示函数的图象中,当x<0时,函数值y随自变量x的增大而减小的是( D )

A.

B.

C.

D.

2

3.(2012广州市)将二次函数y=x的图象向下平移一个单位,则平移以后的二次函数的解析式为( A )

22

A.y=x-1 B.y=x+1

C.y=(x-1) D.y=(x+1)

4.(2012株洲市)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点

2

2

坐标是( A )

A.(-3,0) B.(-2,0) C.x=-3

D.x=-2

5. (2012巴中市)对于二次函数y=2(x+1)(x-3),下列说法正确的是( C ) A. 图象的开口向下

B. 当x>1时,y随x的增大而减小 C. 当x<1时,y随x的增大而减小 D. 图象的对称轴是直线x=-1

6.(2012

二次函数中高档题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数中档题 一、选择题

1.抛物线y??x?2??3可以由抛物线y?x平移得到,则下列平移过程正确的是( )

22A.先向左平移2个单位,再向上平移3个单位 。B.先向左平移2个单位,再向下平移3个单位 C.先向右平移2个单位,再向下平移3个单位 。 D.先向右平移2个单位,再向上平移3个单位

2?x?1?1?x≤3????2.已知函数y??,则使y=k成立的x值恰好有三个,则k的值为( )

2???x?5??1?x>3?A.0 B.1

2C.2 D.3

3.如图为抛物线y?ax?bx?c的图像,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正

确的是( ) A.a+b=-1 B. a-b=-1 C. b<2a D. ac<0

4.若二次函数y=ax+bx+c的x与y的部分对应值如下表:

2

X y

-7 -27

-6 -13

-5 -3

-4 3

-3 5

-2 3

则当x=1时,y的值为

A.5 B.-3 C.-13 D.-27

25.如图所示的二次函数y

二次函数经典解答题及答案 (1)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数经典解答题

1.如图,抛物线y=ax2+bx的对称轴为y 轴,且经过点(,),P为抛物线上一点,A (0,).

(1)求抛物线解析式;

(2)Q为直线AP上一点,且满足AQ=2AP.当P运动时,Q在某个函数图象上运动,试写出Q点所在函数的解析式;

(3)如图2,以P A为半径作⊙P与x轴分别交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求点P的横坐标.

【分析】(1)抛物线y=ax2+bx的对称轴为y轴,则b=0,将点(,),代入y=ax2,即可求解;

(2)分点Q在点P下方(点Q位置)、点Q在点P上方(点Q′位置),两种情况分别求解;

(3)分AM=AN、AM=MN、AN=MN,三种情况分别求解.

【解答】解:(1)抛物线y=ax2+bx的对称轴为y轴,则b=0,

将点(,),代入y=ax2并解得:a =,

故抛物线的表达式为:y =x2;

(2)设点Q的坐标为(x,y),点P(m ,m2),

①当点Q在点P下方时(点Q位置),

∵AQ=2AP,

∴P为AQ的中点,

第1 页共3 页

由中点公式得:m =x ,m2=,

整理得:y =x2﹣;

②当点Q在点P上方时(点Q′位置),

同理可得:y =﹣x2+;

Q点所在函数的解析式为:y =

一次函数经典例题大全

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

一. 定义型 例1. 已知函数解:由一次函数定义知

是一次函数,求其解析式。

,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型

例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解: 一次函数 的图像过点(2, -1),

,即k=1。故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型

例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得

四. 图像型

故这个一次函数的解析式为y=2x+4

例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数 的图像过点(1, 0)、(0, 2)

五. 斜截型

故这个一次函数的解析式为y=-2x+2

例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上

二次函数应用题及压轴题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数应用题及压轴题

1.(2014?眉山)“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱. (1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元? (2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高? 2.(2014?台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.

(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;

(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本). ①求w关于x的函数关系式;

②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?

(3