用excel做线性回归分析
“用excel做线性回归分析”相关的资料有哪些?“用excel做线性回归分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“用excel做线性回归分析”相关范文大全或资料大全,欢迎大家分享。
用Excel做线性回归分析
用Excel进行一元线性回归分析
Excel功能强大,利用它的分析工具和函数,可以进行各种试验数据的多元线性回归分析。本文就从最简单的一元线性回归入手.
在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。它们虽很专业,但其实使用Excel就完全够用了。我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
文章使用的是2000版的软件,我在其中的一些步骤也添加了2007版的注解.
1 利用Excel2000进行一元线性回归分析
首先录入数据.
以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。录入结果见下图(图1)。
图1
第二步,作散点图
如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)(excel2007)”。图表向导的图标为。选中数据后,数据变为蓝色(图2)。
图2
):
点击“图表向导”以后,弹出如下对话框(图3
在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出
用Excel做数据分析 - 直方图
用Excel做数据分析——直方图
使用Excel自带的数据分析功能可以完成很多专业软件才有的数据统计、分析,这其中包括:直方图、相关系数、协方差、各种概率分布、抽样与动态模拟、总体均值判断,均值推断、线性、非线性回归、多元回归分析、时间序列等内容。下面将对以上功能逐一作使用介绍,方便各位普通读者和相关专业人员参考使用。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项。
某班级期中考试进行后,需要统计各分数段人数,并给出频数分布和累计频数表的直方图以供分析。
以往手工分析的步骤是先将各分数段的人数分别统计出来制成一张新的表格,再以此表格为基础建立数据统计直方图。使用Excel中的“数据分析”功能可以直接完成此任务。 操作步骤
1.打开原始数据表格,制作本实例的原始数据要求单列,确认数据的范围。本实例为化学成绩,故数据范围确定为0-100。
2.在右侧输入数据接受序列。所谓“数据接受序列”,就是分段统计的数据间隔,该区域包含一组可选的用来定义接收区域的边界值。这些值应当按升序排列。在本实例
线性回归分析
三大产业对我国国内生产总值增长影响的实证分析
【摘要】经济发展是以经济增长为前提的,而经济增长与产业结构变动又有着密不可分的关系。本文采用1978年至2010年的统计数据,通过建立多元线性回归模型,运用最小二乘法,研究三大产业增长对我国国内生产总值的拉动,从而得出调整产业结构对转变经济发展方式,促进我国经济可持续发展的重要性。
【关键字】国内生产总值 三大产业 最小二乘法 产业结构 可持续发展
一、文献综述
国内生产总值(Gross Domestic Product,简称GDP)是指在一定时期内(一个季度或一
年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标。它不但可反映一个国家的经济表现,还可以反映一国的国力与财富。经济增长通常是指在一个较长的时间跨度上,一个国家人均产出(或人均收入)水平的持续增加。经济增长率的高低体现了一个国家或地区在一定时期内经济总量的增长速度,也是衡量一个国家或地区总体经济实力增长速度的标志,它构成了经济发展的物质基础,而产业结构的调整与优化升级对于经济增长乃至经济发展至关重要。
一个国家产业结构的状态及优化升级能力,是经济发展的重要动力。十六大报告提出,推进产业结构
线性回归分析
§ 8.3 线性回归分析 一、回归分析原理 回归分析实际上就是建立某种数学模型并做检验。假定: 一列(或多列)数据的变化同另一列数据的变化呈某种函数关 系,衡量数据联系强度的指标,并通过指标检验其符合的程度, 就称为回归分析。
回归分析包括:一元回归、多元回归以及线性回归和非线 性回归: 一元回归:Y(因变量)取值:y1 y2 y3… X(自变量)取值:x1 x2 x3 … 建立一元线性回归方程: Y=BX+C(方程中的 B 为回归系 数,C为常数) 或者是非线性回归方程:Y=f(X)
多元回归:Y(因变量)取值: y1 y2 y3… X1(自变量1)取值: x11 x12 x13 … X2(自变量2)取值: x21 x22 x23 … ……
Xn(自变量n)取值: xn1 xn2 xn3 …
建立多元线性回归方程:Y=B1X1+B2X2…+ BnXn + B0(方 程中的Bi为回归系数) 或者是非线性回归方程:Y=f(X1 X2…Xn)
二、回归分析的概念 假定测量数据为: 因变量 自变量1 自变量2 … 自变量n y1 x11 x21 … xn1 y2 x12 x22 … xn2 … … … ym x1m x2m … xnm 建立因变量与
Excel求解线性回归详解(LINEST 函数)
本文介绍 Microsoft Office Excel 中 LINEST 函数的公式语法和用法。有关绘制图表和执行回归分析的详细信息LINEST 函数可通过使用最小二乘法计算与现有数据最佳拟合的直线,来计算某直线的统计值,然后返回描述此直线的数组。也可以将 LINEST 与其他函数结合使用来计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。
LINEST 函数
本文介绍 Microsoft Office Excel 中 LINEST 函数 (函数:函数是预先编写的公式,可以对一个或多个值执行运算,并返回一个或多个值。函数可以简化和缩短工作表中的公式,尤其在用公式执行很长或复杂的计算时。)的公式语法和用法。有关绘制图表和执行回归分析的详细信息,请点击“请参阅”部分中的链接。
说明
LINEST 函数可通过使用最小二乘法计算与现有数据最佳拟合的直线,来计算某直线的统计值,然后返回描述此直线的数组。也可以将 LINEST 与其他函数结合使用来计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。请按照本文中
用Excel 2000做图表
用Excel 2000做图表
用Excel 2000做图表
Microsoft Excel 2000在企业办公、数据处理等方面具有强大的功能。但是,对于如何根据Excel工作表中的数据来创建图表及生成链接,许多人却知之甚少。下面我们以某工厂1990年至1995年的工业年生产总值为例,来说明柱形图表的生成与链接过程。
制作图表
Microsoft Excel 2000的图表模板很多,在生产和销售中,经常用柱形图来描述,这样,有利于看出并分析其变化趋势。制作图表的步骤如下:
1、选定年份和生产总值两行数值,单击[图表向导],如图1。在图表向导对话框中图表类型选择柱形图,子图表类型选择簇状柱形图,单击[下一步]。
图1
2、在图表源数据的数据区域中出现“=Sheet1!$A$3:$G$4”,“系列产生在”选择 “行” ,在系列中的分类X轴标志中填入“=Sheet1!$B$3:$G$3”,系列对话框中删除“年份”,单击[下一步],如图2。
用Excel 2000做图表
图2
3、在图表选项中填入图表标题,X轴和Y轴的名称,单击[下一步]。
4、在图表位置的“作为其中的对象插入”中填入“Sheet1”,单击[完成]即可生成图表,如图3所示。
图3
为图表美容
用Excel 200
线性回归分析法
一元线性回归分析和多元线性回归分析
一元线性回归分析
1.简单介绍
当只有一个自变量时,称为一元回归分析(研究因变量y和自变量x之间的相关关系);当自变量有两个或多个时,则称为多元回归分析(研究因变量y和自变量x1,x2,…,xn之间的相关关系)。如果回归分析所得到的回归方程关于未知参数是线性的,则称为线性回归分析;否则,称为非线性回归分析。在实际预测中,某些非线性关系也可以通过一定形式的变换转化为线性关系,所以,线性回归分析法成为最基本的、应用最广的方法。这里讨论线性回归分析法。
2.回归分析法的基本步骤
回归分析法的基本步骤如下: (1) 搜集数据。
根据研究课题的要求,系统搜集研究对象有关特征量的大量历史数据。由于回归分析是建立在大量的数据基础之上的定量分析方法,历史数据的数量及其准确性都直接影响到回归分析的结果。 (2) 设定回归方程。
以大量的历史数据为基础,分析其间的关系,根据自变量与因变量之间所表现出来的规律,选择适当的数学模型,设定回归方程。设定回归方程是回归分析法的关键,选择最优模型进行回归方程的设定是运用回归分析法进行预测的基础。 (3) 确定回归系数。
将已知数据代入设定的回归方程,并用最小二乘法原则计算出回归系数,确定
方差分析 线性回归
1 线性回归
1.1 原理分析
要研究最大积雪深度x与灌溉面积y之间的关系,测试得到近10年的数据如下表:
使用线性回归的方法可以估计x与y之间的线性关系。 线性回归方程式:
对应的估计方程式为
线性回归完成的任务是,依据观测数据集(x1,y1),(x2,y2),...,(xn,yn)使用线性拟合估计回归方程中的参数a和b。a,b都为估计结果,原方程中的真实值一般用α和β表示。
为什么要做这种拟合呢?
答案是:为了预测。比如根据前期的股票数据拟合得到股票的变化趋势(当然股票的变化可就不是这么简单的线性关系了)。 线性回归的拟合过程使用最小二乘法,
最小二乘法的原理是:选择a,b的值,使得残差的平方和最小。
为什么是平方和最小,不是绝对值的和?答案是,绝对值也可以,但是,绝对值进行代数运算没有平方那样的方便,4次方又显得太复杂,数学中这种“转化化归”的思路表现得是那么的优美! 残差平方和Q,
求最小,方法有很多。代数方法是求导,还有一些运筹学优化的方法(梯度下降、牛顿法),这里只需要使用求导就OK了,
为表示方便,引入一些符号,
最终估计参数a与b的结果是:
自此,针对前面的例子,只要将观测数据带入上面表达式即可计算得到拟合之后的a和b。不妨试
基于EXCEL的回归分析
辽宁警官高等专科学校
本科毕业论文
系: 公安技术系
专业: 刑事科学技术
学生: 于熙雯
指导教师: 沈 聪
完成日期: 2009年5月15日
基于EXCEL的回归分析在足迹分析上的应用
辽宁警官高等专科学校毕业设计(论文)题目
基于EXCEL的回归分析
在足迹分析上的应用
总计 毕业设计(论文) 17 页
表格 3 个 插图 3 幅
1
基于EXCEL的回归分析在足迹分析上的应用
毕业论文任务书 姓 名 于熙雯 专 业 刑事科学技术 毕业论文方向: 痕迹检验 题 目: 基于EXCEL的回归分析在足迹分析上的应用 完成日期: 2009-5-15 题目来源: 自拟 在校内或校外以何种形式进行: 校内在老师指导下独立完成 论文主要内容:回归分析预测法可以从各种痕迹数据之间的相互关系出发,通过对与预测对象有联系的现象变动趋势的分析,推算
SPSS—回归—多元线性回归结果分析(二)
SPSS—回归—多元线性回归结果分析(二) 2011-10-27 14:44
,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。
接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示: 结果分析1:
由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands\ 建立了模型1,紧随其后的是“Wheelbase\ 建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等 0.1时,从“线性模型中”剔除
结果分析:
1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些 (0.422>0.300)
2:从“Anova\可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和= 回归平方和+残差平方和,由于