抛物线焦点弦的几个常用结论

“抛物线焦点弦的几个常用结论”相关的资料有哪些?“抛物线焦点弦的几个常用结论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“抛物线焦点弦的几个常用结论”相关范文大全或资料大全,欢迎大家分享。

抛物线焦点弦的有关结论附答案

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

[很全]抛物线焦点弦的有关结论

知识点1:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则

p2(1)x1x2?;(2)y1y2??p2

4证明:如图,

(1)若AB的斜率不存在时,

p2p依题意x1?x2?,?x1x2?

24A y x o B F p??若AB的斜率存在时,设为k,则AB:y?k?x??,与y2?2px联立,得

2??p?k2p22?222k?x???2px?kx?k?2px??0

24??2??p2p2?x1x2?. 综上:x1x2?.

44yy(2)?x1?1,x2?2,?y12y22?p4?y1y2??p2,

2p2p但y1y2?0,?y1y2??p2 (2)另证:设AB:x?my?p与y2?2px联立,得y2?2pmy?p2?0,?y1y2??p2 222知识点2:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则(1)AB?x1?x2?p;(2)设直线AB的倾斜角为?,则AB?证明:(1)由抛物线的定义知

ppAF?x1?,BF?x2?,

222p。 sin2?A y ?AB?AF?BF?x1?x2?p (2)若??900

抛物线焦点弦的有关结论附答案

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

[很全]抛物线焦点弦的有关结论

知识点1:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则

p2(1)x1x2?;(2)y1y2??p2

4证明:如图,

(1)若AB的斜率不存在时,

p2p依题意x1?x2?,?x1x2?

24A y x o B F p??若AB的斜率存在时,设为k,则AB:y?k?x??,与y2?2px联立,得

2??p?k2p22?222k?x???2px?kx?k?2px??0

24??2??p2p2?x1x2?. 综上:x1x2?.

44yy(2)?x1?1,x2?2,?y12y22?p4?y1y2??p2,

2p2p但y1y2?0,?y1y2??p2 (2)另证:设AB:x?my?p与y2?2px联立,得y2?2pmy?p2?0,?y1y2??p2 222知识点2:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则(1)AB?x1?x2?p;(2)设直线AB的倾斜角为?,则AB?证明:(1)由抛物线的定义知

ppAF?x1?,BF?x2?,

222p。 sin2?A y ?AB?AF?BF?x1?x2?p (2)若??900

抛物线焦点弦问题

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

江夏一中2013届文科数学一轮复习专题讲座

抛物线焦点弦问题

抛物线焦点弦问题较多,由焦点引出弦的几何性较集中,现总结如下: 一.弦长问题:

2

例1 斜率为1的直线经过抛物线y 4x的焦点,与抛物线相交AB两点,求线段AB的长。

二.通径最短问题:

2

例2:已知抛物线的标准方程为y 2px,直线l过焦点,和抛物线交与A.B两点,求AB的最小值并

求直线方程。

三.两个定值问题:

2

例3:过抛物线y 2px的焦点的一条直线和抛物线相交,两个焦点的横、纵坐标为x1、x2、y1、y2,

p22

求证:x1y1 ,y1y2 p。

4

四.一个特殊直角问题:

2

例4:过抛物线y 2px(P 0)的焦点F的直线与抛物线交与A、B两点,若点A、B在抛物线的准

线上的射影分别是A1,B1求证: A1FB1 90。

五.线段AB为定长中点到y轴的最小距离问题

2

例5:定长为3的线段AB的两端点在抛物线y x上移动,设点M为线段AB的中点,求点M到y 轴

的最小距离。

六.一条特殊的平行线

例6:过抛物线焦点的一条直线与它交与两点P、Q,经过点P 和抛物线顶点的直线交准线于点M,求证:直线MQ平行于抛物线的对称轴。

七.一个特殊圆

例7:求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切。

八.

抛物线焦点弦的弦长公式 2

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

关于抛物线焦点弦的弦长公式补充

(1)已知:抛物线的方程为

y2?2px(p?0),过焦点F的弦AB交抛物线于A B两点,

且弦AB的倾斜角为?,求弦AB的长。 解:由题意可设直线AB的方程为y?k(x?p?)(??)将其代入抛物线方程整理得:

224k2x2?(4pk?8p)x?12pk122?0 ,且k?tan?

?pk?2p,

x2设A,B两点的坐标为(x,y),(x,y) 则:x?x2212k21x2?p42

|AB|?1?k2(x1?x2)2?4x1x2?2p(sin?)2

当???2时,斜率不存在,sin??1,|AB|=2p.即为通径

而如果抛物线的焦点位置发生变化,则以上弦长公式成立吗?这只能代表开口向右时的弦长计算公式,其他几种情况不尽相同。 现在我们来探讨这个问题。

(2)已知:抛物线的方程为

x2?2py(p?0),过焦点的弦AB交抛物线于A,B两点,

直线AB倾斜角为?,求弦AB的长。

解:设A,B的坐标为(故AB的方程为y?x1,y),(x2,y),斜率为k(k?tan?),而焦点坐标为(0,),

12p2p?kx,将其代入抛物线的方程整理得: 22x2?2pkx?p?0,从而x1?x2?2pk,x1x2??p,

22弦长为:|

抛物线的几个常见结论及其应用

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

抛物线的几个常见结论及其应用

抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。

结论一:若AB是抛物线y2 2px(p 0)的焦点弦(过焦点的弦),且A(x1,y1),B(x2,y2),则:

p2

x1x2 ,y1y2 p2。

4

例:已知直线AB是过抛物线

y2 2px(p 0)焦点F,求证:

11为定值。 AFBF

结论二:(1)若AB是抛物线y2 2px(p 0)的焦点弦,且直线AB的倾斜角为α,则

AB

2P(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)

2sin

最短。

例:已知过抛物线

y2 9x的焦点的弦AB长为12,则直线AB倾斜角为 。AB倾斜角为

2 或。 33

结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。

(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

例:已知AB是抛物线相切。

(2)分别过A、B做准线的垂线,垂足为M、N,求证:以MN为直径的圆与直线AB

(1)以AB为直径的圆与抛物线的准线y2 2px(p 0)的过焦点F的弦,求证:

结论四:若抛物线方程为y2 2px(p 0),过(2p,0)的直线与之交于A

抛物线焦点弦的一个性质及其证明

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

关于抛物线焦点弦的一个性质及其证明

江苏省盱眙县马坝高级中学(211751) 赵建宏

p性质:设线段AB是过抛物线 y2?2px(p?0)的焦点F(,0) 的弦,记

2112AF?m,BF?n, 则??。

mnp本文给出下列九种证法:

p 的垂线AM、BN,再作2AP?x轴,BQ?x轴,垂足分别为M、N、P、Q。

证法一:如图一,过A、B分别作准线x??由抛物线定义得:AM?AF?m,BN?BF?n,FK?p 于是

y ?BN?FP?PK?FK?AN?KF?m?p,FQ?FK?KQ?FKp?n, A易知:△APF∽△FQB

FPAFy m?pm112?,即?,整理得:??. ∴A FQBFp?nnmnpM

K O N B Q F P C K O M ,

2 E )( 1 x F N B x 图一

D 图二 1

证法二:接图一,分别取MN、AB中点C、E,连结CE、CF、AC、FN及FM,延长AB交MN于D(如图二).

∵AM?AF?m,BN?BF?n.

11m?n∴∠1=(180o-∠NBA),∠2=(180o-∠MAB),CE?

222AM∥BN 又∵

∴∠NBA+∠MAB=180o ,∴∠1+∠2=90o ∴∠M

与抛物线有关的结论

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

与抛物线有结论

抛物线中有一些常见、常?y?k(x?p?)用的结论,了解这些结论后在做选择题、填空题2??y2?2px?时可迅速解答相关问题,在做解答题时也可迅速打开思路。

p2结论一:若AB是抛物线y?2px(p?0)的焦点弦(过焦点的弦),且A(x1,y1),B(x2,y2),则:x1x2?,

42y1y2??p2。

证明:因为焦点坐标为F(

22pp,0),当AB不垂直于x轴时,可设直线AB的方程为: y?k(x?), 222y12y22p4p2由得: ky?2py?kp?0 ∴y1y2??p,x1x2?。 ???2p2p4p24当AB⊥x轴时,直线AB方程为x?p2x1x2?。

4p,则y1?p,y2??p,∴y1y2??p2,同上也有:2例:已知直线AB是过抛物线y2?2px(p?0)焦点F,求证:

11?AFBF为定值。

pp,BF?x2?,又22证明:设A(x1,y1),B(x2,y2),由抛物线的定义知:AF?x1?p2。 AF+BF=AB,所以x1+x2=AB-p,且由结论一知:x1x2?4则:1?1?AF?BF?AFBFAF?BFABABAB2 =?(常数) ?222ppppp

解-点差法公式在抛物线中点弦问题中的妙用资料

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

“点差法”公式在抛物线中点弦问题中的妙用

圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。

若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。

定理 在抛物线y?2mx(m?0)中,若直线l与抛物线相交于M、N两点,点P(x0,y0)是弦MN的中点,弦MN所在的直线l的斜率为kMN,则kMN?y0?m.

2??y1?2mx1,??(1)证明:设M、N两点的坐标分别为(x1,y1)、(x2,y2),则有?2

??y2?2mx2.??(2)2(1)?(2),得y1?y2?2m(x1?x2).

22?y2?y1?(y2?y1)?2m.

x2?x1y2?y1,y2?y1?2y0.

x2?x1又?kMN??kMN?y0?m.

注意:能用这个公式的条件:(1)直线与抛物

抛物线的几何性质(2)

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

选修2-1 第二章 圆锥曲线 2.4抛物线 2.4.2抛物线的简单几何性质

普通高中课程标准实验教材选修( ) 普通高中课程标准实验教材选修(2-1)

抛物线习题课( ) 抛物线习题课(1)

选修2-1 第二章 圆锥曲线 2.4抛物线 2.4.2抛物线的简单几何性质

复习

一、抛物线的定义平面内与一个定点F和一条定直线 平面内与一个定点 和一条定直线l 和一条定直线 的距离相等的点的轨迹叫做抛物线 抛物线. 的距离相等的点的轨迹叫做抛物线. 定点F叫做抛物线的焦点 定点 叫做抛物线的焦点 叫做抛物线的焦点. 定直线l 叫做抛物线的准线 准线. 定直线 叫做抛物线的准线N lM

· ·F

即:

MF ︳ ︳ , 则点 M 的轨迹是抛物线。 若 =1 MN ︳ ︳

注意:定点不在定直线上。 注意:定点不在定直线上。

选修2-1 第二章 圆锥曲线 2.4抛物线 2.4.2抛物线的简单几何性质

练习4.到定点(3,5)与定直线2x+3y-21=0的距离相等的点的轨迹 4.到定点(3,5)与定直线2x+3y-21=0的距离相等的点的轨迹 到定点(3,5)与定直线2x+3y 是( A.圆 A.圆 C.线段 C.线段

D)B.抛物线 B

抛物线及其标准方程

标签:文库时间:2024-10-06
【bwwdw.com - 博文网】

篇一:抛物线定义及标准方程

一、 复习预习

复习双曲线的基本性质,标准方程以及方程的求法、应用

二、知识讲解

(一)导出课题

我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.

请大家思考两个问题:

问题1:同学们对抛物线已有了哪些认识?

在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?

问题2:在二次函数中研究的抛物线有什么特征?

在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.

引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.

(二)抛物线的定义

1.回顾

平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?

2.简单实验

如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用