圆锥曲线定点定值
“圆锥曲线定点定值”相关的资料有哪些?“圆锥曲线定点定值”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线定点定值”相关范文大全或资料大全,欢迎大家分享。
第4讲圆锥曲线的定点与定值问题
第四讲 圆锥曲线中的定点与定值问题 1.如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的y交点为R. D(1)求动点R的轨迹E的方程; H(2)过曲线E的右焦点作直线l 交曲线E于M、N两点,交yC轴与点P,记PM??1MF,PN??2NF.求证:λ1+ λ2是定值. (设点法)
2. 已知A、B分别是直线y?P是AB的中点.
(1)求动点P的轨迹C的方程;
(2)过点Q(1,0)作直线l(与x轴不垂直)与轨迹C交于M、N两点,与y轴交于点R.若
RAOBx33x和y?? x上的两个动点,线段AB的长为23,33RM??MQ,RN??NQ,证明:???为定值.(设直线方程法)
1
x2y2??1的左、右顶点为A、B,3. 在平面直角坐标系xoy中,如图,已知椭圆95右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1?0,y2?0.
(1)设动点P满足PF2?PB2?4,求点P的轨迹; (2)设x1?2,x2?13,求点T的坐标; (3)设t
椭圆定点定值专题
一.解答题(共30小题)
1.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4
.
(Ⅰ)求椭圆C的标准方程; (Ⅱ)P(2,n),Q(2,﹣n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点. ①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由.
2.已知椭圆
的离心率为,且经过点
.
(1)求椭圆C的方程; (2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=m(定值m≠0),求直线l的斜率.
3.如图,在平面直角坐标系xOy中,椭圆
的焦距为2,且过点
.
(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.
(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;
(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.
4.已知F1,F2分别是椭圆足
(a>b>0)的左、右焦点,半焦距为c,直线x=﹣
与x轴的交点为N,满
,设A、B是上半
高考圆锥曲线中及定点与定值问题(题型总结超全)
..
专题08 解锁圆锥曲线中的定点与定值问题
一、解答题
1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆离心率为
;圆
的左右焦点分别为
两点.
,
过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于
(Ⅰ)求椭圆的标准方程;
(Ⅱ)证明:在轴上存在定点,使得【答案】(1)
(2)
为定值;并求出该定点的坐标.
【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得
。设x轴上的定点为,可得
,由定值可得需满足
,解得可得定点坐标。
解得。
.
∴椭圆的标准方程为(Ⅱ)证明:
由题意设直线的方程为由设
,
消去y整理得
,
,
,
..
要使其为定值,需满足解得
.
.
,
故定点的坐标为
点睛:解析几何中定点问题的常见解法
(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.
2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k的直线l经过点??1,0?与抛物
高考圆锥曲线中及定点与定值问题(题型总结超全)
..
专题08 解锁圆锥曲线中的定点与定值问题
一、解答题
1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆离心率为
;圆
的左右焦点分别为
两点.
,
过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于
(Ⅰ)求椭圆的标准方程;
(Ⅱ)证明:在轴上存在定点,使得【答案】(1)
(2)
为定值;并求出该定点的坐标.
【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得
。设x轴上的定点为,可得
,由定值可得需满足
,解得可得定点坐标。
解得。
.
∴椭圆的标准方程为(Ⅱ)证明:
由题意设直线的方程为由设
,
消去y整理得
,
,
,
..
要使其为定值,需满足解得
.
.
,
故定点的坐标为
点睛:解析几何中定点问题的常见解法
(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.
2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k的直线l经过点??1,0?与抛物
圆锥曲线范围最值与图形存在
圆锥曲线的范围问题
x221.设P是椭圆2?y?1(a?1)短轴的一个端点,Q为椭圆上的动点,求|PQ|的最大值.
a
2.设F1,F2分别是椭圆的左右焦点,若是P椭圆上的一个动点,求|PF1||PF2|的最大值和最小值.
3.在平面直角坐标系中,已知点F(2,2)及直线l:x?y?2?0,曲线C1是满足下列两个条件的动点P(x,y)的轨迹:①PF?2d,其中d是P到直线l的距离;
?x?0?.②?y?0?2x?2y?5?
(1) 求曲线C1的方程;
x2y2(2) 若存在直线m与曲线C1、椭圆C2:2?2?1(a?b?0)均相切于同一点,求椭圆C2ab离心率e的取值范围.
一、利用题设中已有的不等关系建立不等式
2.过点B(0,1)的直线l1交直线x?2于P(2,y0),过点B?(0,?1)的直线l2交
x0?y0?1,l1?l2?M. 2(1)求动点M的轨迹C的方程;
(2)设直线l与C相交于不同的两点S、T,已知点S的坐标为(-2,0),
x轴于P?(x0,0)点,
点Q(0,m)在线段ST的垂直平分线上,且QS?QT≤4,求实数m的取值范围.
1
解 (1)由题意,直线l1的方程是y??1?y0xx?1,∵
直线与圆锥曲线-定点问题(教师版) - 图文
圆锥曲线中的定点问题
定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k和m的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型:
模型一:“手电筒”模型
x2y2??1若直线l:y?kx?m与椭圆C相交于A,例题、(07山东)已知椭圆C:43B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定
点,并求出该定点的坐标。
解:设A(x1,y1),B(x2,y2),由??y?kx?m得(3?4k2)x2?8mkx?4(m2?3)?0, 223x?4y?12???64m2k2?16(3?4k2)(m2?3)?0,3?4k2?m2?0
8mk4(m2?3)x1?x2??,x1?x2?
3?4k23?4k23(m2?4k2)y1?y2?(kx1?m)?(kx2?m)?kx
圆锥曲线中的最值和范围问题
圆锥曲线专题:圆锥曲线中的最值和范围问题
热点透析
与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:
(1)结合定义利用图形中几何量之间的大小关系;典型例题:<<考一本>>
(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;
(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;
(6)构造一个二次方程,利用判别式??0。 突破重难点
x2?y2?1上移动,试求|PQ|的最大值。 【例1】已知P点在圆x+(y-4)=1上移动,Q点在椭圆92
2
解:先让Q点在椭圆上固定,显然当PQ通过圆心O1时|PQ|最大,因此要求|PQ|的最大值,只要求|O1Q|
222
的最大值.设Q(x,y),则|O1Q|= x+(y-4) ①
22
因Q在椭圆上,则x=9(1-y) ②
1??将②代入①得|O1Q|= 9
圆锥曲线中的最值和范围问题
圆锥曲线专题:圆锥曲线中的最值和范围问题
热点透析
与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:
(1)结合定义利用图形中几何量之间的大小关系;典型例题:<<考一本>>
(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;
(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;
(6)构造一个二次方程,利用判别式??0。 突破重难点
x2?y2?1上移动,试求|PQ|的最大值。 【例1】已知P点在圆x+(y-4)=1上移动,Q点在椭圆92
2
解:先让Q点在椭圆上固定,显然当PQ通过圆心O1时|PQ|最大,因此要求|PQ|的最大值,只要求|O1Q|
222
的最大值.设Q(x,y),则|O1Q|= x+(y-4) ①
22
因Q在椭圆上,则x=9(1-y) ②
1??将②代入①得|O1Q|= 9
圆锥曲线利用点的坐标解决圆锥曲线问题
第九章 利用点的坐标处理解析几何问题 解析几何
利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:
1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:
(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受
x1?x2,x1x2,y1?y2,y1y2形式的约束
(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点
文科圆锥曲线
高考数学练习题---文科圆锥曲线
一、选择题
x2y21.【2012高考新课标文4】设F1F2是椭圆E:2?2?1(a?b?0)的左、右焦点,P为直
ab线x?
3a上一点,?F2PF1是底角为30的等腰三角形,则E的离心率为( ) 212??(A) (B) (C) (D)
23??【答案】C
【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.
0【解析】∵△F2PF1是底角为30的等腰三角形, ∴?PF2A?600,|PF2|?|F1F2|?2c,∴|AF2|=c,∴2c?33a,∴e=,故选C. 242.【2012高考新课标文10】等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线
y2?16x的准线交于A,B两点,AB?43;则C的实轴长为( )
(A)2 (B) 22 (C)? (D)?
【答案】C
【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:x?4,设等轴双曲线方程为:x?y?a,将x?4代入等轴双曲线方程解得y=?16?a2,∵