var时间序列分析方法
“var时间序列分析方法”相关的资料有哪些?“var时间序列分析方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“var时间序列分析方法”相关范文大全或资料大全,欢迎大家分享。
时间序列分析方法
深圳大学研究生课程论文
题目 对时间序列分析方法的学习报告 成绩
专业 软件工程(春) 课程名称、代码 数据库与数据挖掘 142201013021
年级 2013 姓名 朱文静
学 号 20134313005 时间 2014 年 11 月
任课教师 傅向华
1时间序列分析方法及其应用综述
1.1时间序列分析概念
时间序列分析(Time series analysis)是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。
时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分
时间序列分析方法 (刘金全)
时间序列分析讲义
Time Series Analysis
吉林大学商学院刘金全
时间序列分析原来是“概率论与数理统计”领域当中的一个重要分支,其中有国际著名的学术杂志“时间序列分析”。由于在过去的二十几年当中,时间序列分析方法在经济学的定量分析当中获得了空前的成功应用,因此所出现的“时间序列计量经济学”已经成为了“实证宏观经济学”的同意语或者代名词。由此可见,作为宏观经济研究,甚至已经涉及到微观经济分析,时间序列分析方法是十分重要的。
时间序列分析方法之所以在经济学的实证研究中如此重要,其主要原因是经济数据大多具有时间属性,都可以按照时间顺序构成时间序列,而时间序列分析正是分析这些时间序列数据动态属性和动态相关性的有力工具。从一些典型的研究案例中可以看出,时间序列分析方法在揭示经济变量及其相关性方法取得了重要进展。
目前关于时间序列分析的教科书和专著很多。仅就时间序列本身而言的理论性论著也很多,例如本课程主要参考的Hamilton的“时间序列分析”,以及Box和Jankins的经典性论著“时间序列分析”;近年来出现了两本专门针对经济学和金融学所编写的时间序列专著,这也是本课程主要参考的教材。另外需要注意的是,随着平稳性时间序列方法的成熟和解决问题所受
《时间序列分析》讲义
第1章 差分方程和滞后算子
第一节 差分方程
一.一阶差分方程
假定t期的y(输出变量)和另一个变量w(输入变量)和前一期的y之间存在如下动态方程:
yt??yt?1?w (1)
则此方程为一阶线性差分方程,这里假定w为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:
mt?0.27?0.72mt?1?0.19It?0.045rbt?0.019rct
wt?0.27?0.19It?0.045rbt?0.019rct
其中mt为货币量,It为真实收入,rbt为银行账户利率,rct为商业票据利率。 1)用递归替代法解差分方程 根据方程(1),可以得到
012?ty0??y?1?w0y1??y0?w1y2??y1?w2 (2) ?yt??yt?1?wt如果我们知道t??1期的初始值y?1和w的各期值,则可以通过动态系统得到任何一个时期的值。即
yt??t?1y?1??tw0??t?1w1?....?wt (3)
这个过程称为差分方程的
时间序列建模分析
1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
时间序列建模分析 及EVIEWS应用
1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
目录1、ARIMA模型1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例
2、季节时间序列模型2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
时间序列的预处理:拿到一个时间序列后,首先要对它的平 稳性和纯随机性进行检
《时间序列分析》讲义
1 第1章 差分方程和滞后算子
第一节 差分方程
一.一阶差分方程
假定t 期的y (输出变量)和另一个变量w (输入变量)和前一期的y 之间存在如下动态方程:
1t t y y w φ-=+ (1)
则此方程为一阶线性差分方程,这里假定w 为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:
10.270.720.190.0450.019t t t bt ct m m I r r -=++--
0.270.190.0450.019t t bt ct w I r r =+--
其中t m 为货币量,t I 为真实收入,bt r 为银行账户利率,ct r 为商业票据利率。
1)用递归替代法解差分方程
根据方程(1),可以得到
010********
1
2
t t t
y y w y y w y y w t y y w φφφφ--=+=+=+=+
(2) 如果我们知道1t =-期的初始值1y -和w 的各期值,则可以通过动态系统得到任何一个时期的值。即
11101....t t t t t y y w w w φφφ+--=++++
《时间序列分析》讲义
第1章 差分方程和滞后算子
第一节 差分方程
一.一阶差分方程
假定t期的y(输出变量)和另一个变量w(输入变量)和前一期的y之间存在如下动态方程:
yt??yt?1?w (1)
则此方程为一阶线性差分方程,这里假定w为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:
mt?0.27?0.72mt?1?0.19It?0.045rbt?0.019rct
wt?0.27?0.19It?0.045rbt?0.019rct
其中mt为货币量,It为真实收入,rbt为银行账户利率,rct为商业票据利率。 1)用递归替代法解差分方程 根据方程(1),可以得到
012?ty0??y?1?w0y1??y0?w1y2??y1?w2 (2) ?yt??yt?1?wt如果我们知道t??1期的初始值y?1和w的各期值,则可以通过动态系统得到任何一个时期的值。即
yt??t?1y?1??tw0??t?1w1?....?wt (3)
这个过程称为差分方程的
传统时间序列分析
第九章 传统时间序列分析
时间序列的变动主要是由长期趋势、循环波动、季节变动及不规则变动而形成的,其中前三种变动有一个共同的特点,就是依一定的规则而变化,不规则变动则在综合中可以消除。基于这种认识,本章主要是介绍设法消除不规则变动,拟合确定型趋势,因而形成了一系列确定型时间序列分析方法。
实验一 季节模型
实验目的:
掌握季节调整的方法。 实验内容:
对时间序列进行季节调整。 知识准备:
经济时间序列的变化受许多因素的影响,概括地讲,可以将影响时间序列变化的因素分为四种,即长期趋势(T,随着时间的变化,按照某种规律稳步地增长、下降或保持在某一水平上)、季节变动因素(S,在一个年度内依一定周期规则性变化)、周期变动因素(C,以若干年为周期的波动变化)和不规则变动因素(I,许多不可控的偶然因素共同作用的结果)。传统时间序列分析应是设法消除不规则变动,指拟合确定性趋势,因而形成了长期趋势分析、季节变动分析和循环波动测定等一系列确定型时间序列分析方法。
季节变动是一种较为普遍的现象,其按照一定的周期循环进行,而且每个周期变化强度大体一致。研究季节变动的目的在于了解季节变动的规律,并进行季节预测。分析季节变动的方法有很多,其中常用的方法有两类:一是不考
时间序列分析试题
第九章 时间序列分析
一、单项选择题
1、乘法模型是分析时间序列最常用的理论模型。这种模型将时间序列按构成分解为( ) 等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。 A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动
B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动
C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动
D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动
答案:C
2、加法模型是分析时间序列的一种理论模型。这种模型将时间序列按构成分解为( )等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。
A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动
B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影
时间序列分析试卷
第 1 页 共 6 页
时间序列分析试卷1
一、 填空题(每小题2分,共计20分)
1. ARMA(p, q)模型_________________________________,其中模型参数为
____________________。 2. 设时间序列?Xt?,则其一阶差分为_________________________。 3. 设ARMA (2, 1):
Xt?0.5Xt?1?0.4Xt?2??t?0.3?t?1
则所对应的特征方程为_______________________。
4. 对于一阶自回归模型AR(1): Xt?10+?Xt?1??t,其特征根为_________,平稳域是
_______________________。
5. 设ARMA(2, 1):Xt?0.5Xt?1?aXt?2??t?0.1?t?1,当a满足_________时,模型平稳。 6. 对于一阶自回归模型______________________。 7. 对于二阶自回归模型AR(2):
MA(1):
Xt??t?0.3?t?1,其自相关函数为
Xt?0.5Xt?1?0.2Xt?2??t
则模型所满足的Yule-Walker方程是___________
第04章 一元时间序列分析方法
金融计量pdf
第四章 一元时间序列分析方法
[学习目标]
¾ ¾ ¾ ¾
时间序列数据是经济分析中的一类重要数据。时间序列分析是现代计量经济学的重要内容,在金融数据分析中具有广泛的应用。一元时间序列模型是一类特殊的模型,我们可以利用金融变量自身过去的数值,也可以根据误差项的当前及过去的数值中所提供的信息来建立模型并做出预测。这与通常计量经济学中所谈论的结构式模型不同, 结构式模型是试图用其他解释变量的当前值或过去值的变动来解释因变量的变化模型,其本质上是多元的; 而通常, 时间序列模型是缺乏理论基础的,它的建立与使用不是建立在关于变量的行为模式的任何理论模型基础上的,而是从观测到的数据中实证地获得其特征模型。
本章将叙述时间序列分析的基本概念和时间序列模型的识别、估计、检验,包括自回归模型(AR)、移动平均模型(MA)、自回归移动平均模型(ARMA)、单整自回归移动平均模型(autoregressive integrate moving average models,ARIMA)以及时间序列平稳性与单位根检验。
了解平稳性和白噪声过程; 熟悉随机序列模型; 熟悉ARIMA过程;
掌握时间序列的平稳性和单位根检验。