行列式的起源及发展史
“行列式的起源及发展史”相关的资料有哪些?“行列式的起源及发展史”相关的范文有哪些?怎么写?下面是小编为您精心整理的“行列式的起源及发展史”相关范文大全或资料大全,欢迎大家分享。
行列式发展史
行列式发展历史
我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。
行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。
行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。
行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。
1693年4月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。
1750 年,瑞士数学家克莱姆 (G.Cramer,1704~1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝祖 (E.Bezout,1730~1783) 将确定行列式每一项符号的方法
行列式 -
第一章 行列式
行列式的概念是在研究线性方程组的解的过程中产生的. 它在数学的许多分支中都有着非常广泛的应用,是常用的一种计算工具。特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具。
§1.1 n阶行列式定义和性质
1.二阶行列式
定义1 二阶行列式 由22个数排成2行2列所组成下面的式子(或符号)
a11a21a12?a11a22?a12a21 a22称为二阶行列式,行列式中每一个数称为行列式的元素,数aij称为行列式的元素,它的第一个下标i称为行标,表明该元素位于第i行,第二个下标j称为列标, 表明该元素位于第
2j列.位于第i行第j列的元素称为行列式的(i,j)元。2阶行列式由2个数组成,两行两列;展开式是一个数或多项式;若是多项式则必有2!?2项,且正负项的各数相同。
应用:解线性方程
例1:二阶线性方程组
?a11x1?a12x2?b1??a21x1?a22x2?b2 且a11a22?a12a21?0. 解:D?
a11a21a11a12a22b1D1,D?a11a22?a12a21,D1??a11b2?b1a21
x2?D2. Db1b2a12a22?b1a22?a12b2,
D2
行列式发展历史
行列式发展历史
我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。
行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。
行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。
行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。
1693年4月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。
1750 年,瑞士数学家克莱姆 (G.Cramer,1704~1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝祖 (E.Bezout,1730~1783) 将确定行列式每一项符号的方法
行列式及矩阵的发展简史
矩阵
矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。
英国数学家凯莱,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转
行列式试题及答案
第一章 行列式试题及答案
一 选择题 (每小题3分,共30分)
⑴ n元排列 i1 i2… in经过相邻对换,变为in … i2 i1,则相邻对换的次数为( )
(A) n (B) n/2 (C) 2n
(D) n(n-1)/2
2x1?1⑵ 在函数f?x???2x?x4x中,x3的系数是( )
12x (A) -2 (B) 2 (C) -4 (D) 4
⑶ 若Dn=det(aij)=1,则det(-aij) = ( )
(A) 1 (B) -1 (C) (-1)n
(D) (-1)
n(n-1)/2
?1?1⑷ 设
?2???2?,则n不可取下面的值是( )
?n?n(A)7 (B) 2k
+1(k2) (C) 2k
(k
2) (D) 17
⑸ 下列行列式等于零的是( )
3210030?103?16(A)?321 (B) 0?10 (C) 300 (D) 224
001130001162⑹ 行列式D非零的充分条件是( ) (A) D的所有元素非零 (B) D至少有n个元素非零 (C) D的任何两行元素不成比例
(D)以D为系数矩阵的非齐次线性方程组
线性代数 - 特殊行列式及行列式计算方法总结
特殊行列式及行列式计算方法总结
一、 几类特殊行列式
1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式
a11a21anna12a220n(n?1)2a1n00000?0an1an100an?1,2an20a2,n?1a1na2n?000an10a2,n?100a1n00 0an?1,n?1an?1,nan,n?1ann?(?1)a1na2,n?13. 分块行列式(教材P14例10)
一般化结果:
An0m?n0n?mBmCn?mBmAnCm?n??AnCm?nAn0n?mBm?An?Bm
Cn?mBm0m?n?(?1)mnAn?Bm
4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记!
以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算
二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】
1) 利用行列式定义直接计算特殊行列式;
2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;
3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算
——适用于行列式的某一行或某一列中有很多零元素,并
线性代数 - 特殊行列式及行列式计算方法总结
特殊行列式及行列式计算方法总结
一、 几类特殊行列式
1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式
a11a21?ann?(?1)a12?a1na22??0n(n?1)20000?an2????0a2,n?1?an,n?1a1na2n?an?1,nann?000??000a1n00 0?0???00an10?a2,n?1an?1,2?an?1,n?1an1?a1na2,n?1?an13. 分块行列式(教材P14例10)
一般化结果:
An0m?n0n?mBmAnCm?nCn?mBm??AnCm?nAn0m?n0n?mBm?An?Bm
Cn?mBm?(?1)mnAn?Bm
4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记!
以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算
二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】
1) 利用行列式定义直接计算特殊行列式;
2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;
3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算
——适用于
行列式的计算
行列式的计算方法
摘要:行列式计算的技巧性很强.理论上,任何一个行列式都可以按照定义进行计算,但是直接按照定义计算而不借助于计算机有时是不可能的.本文在总结已有常规行列式计算方法的基础上,对行列式的计算方法和一些技巧进行了更深入的探讨.总结出“定义法”、“化三角形法”、“滚动消去法”、“拆分法”、“加边法”、“归纳法”、“降级法”、“特征值法”等十几种计算技巧和途径. 关键词: 行列式 计算方法
行列式是研究某些数的“有规”乘积的代数和的性质及其计算方法.它起源于解线性方程, 以后逐步地应用到数学的其它领域.行列式的计算通常要根据行列式的具体特点,采用相应的计算方法. 这里介绍几种常见的,也是行之有效的计算方法. 1.对角线法则
对角线法则是行列式计算方法中最为简单的一种,记忆起来很方便,但它只适用于二阶和三阶行列式,四阶及以上的行列式就不能采用此方法. 2.定义法
根据行列式定义可知,如果所求的行列式中含的非零元素特别少(一般不多于2n个) ,可以直接利用行列式的定义求解,或者行列式的阶数比较低(一般是2阶或者3阶) .如果对于一些行列式的零元素(若有)分布比较有规律,如上(下) 三角形行列式
求行列式的方法
浅谈求行列式的方法
【摘要】
行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。本文归纳行列式的各种计算方法,通过这一方法可以提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。 【关键词】
行列式,范德蒙行列式,数学归纳法,递推法。 引言
行列式起源于1757年马拉普斯研究解含两个和三个未知量的线性方程组而创建的,然而它的应用早已超出了代数的范围,成为解析几何、数学分析、微分方程、概率统计等数学分支的基本工具。本文主要探讨行列式的计算方法以及它的简单应用。而行列式的计算方法并不是唯一的,本文主要针对行列式的特点,应用行列式的性质,给出了计算行列式的常用方法。
1.定义法:
根据行列式的定义,直接求其值。
a000cd 例: 计算D=
0efg00b0 0h分析:根据定义,D是一个4!=24项的代数和,而每一项是取自不同的行不同的列。因而,在这个行列式里,除了acfh,adeh,bdeg,bcfg,与上面四项对应的排列依次是1234,1324,4321,4231。其
行列式的计算探讨
行列式的计算探讨
作者:肖琨
(井冈山学院数理学院,吉安,江西,343009)
指导老师:朱景文
[摘要] 归纳行列式的各种计算方法,并举例说明了它们的应用,同时对若干特殊的例子进行推广. [关键词] 行列式,拉普拉斯定理展开式,计算方法
一 前言
无论是高等数学领域里的高深理论,还是现实生活里的实际问题都或多或少的与行列式有着直接或间接联系.如:
(1)线形方程组
?a11x11?a12x2?a13x3???a1nxn?b1??a21x1?a22x2?a23x3???a2nxn?b2? ???ax?ax?ax???ax?bn22n33nnxn?n11
是否有解,解的形式是什么样的?
23(2) 现测得,某一地区水银密度h与温度t的关系为:h=a0?a1t?a2t?a3t,并由实验测
定以下数据,
t 0 10 20 30 h 13.60 13.57 13.35 13.32
现预测:t=15,40时水银密度该怎样预测.
(3)自然生态中,要预知一个物种的存活期,繁衍期,该怎样预测呢?
当然,除了以上问