初中数学平行四边形知识点总结
“初中数学平行四边形知识点总结”相关的资料有哪些?“初中数学平行四边形知识点总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学平行四边形知识点总结”相关范文大全或资料大全,欢迎大家分享。
笔记(初中数学—平行四边形)
1.正方形具有而菱形不一定具有的特征有( )
初中数学—平行四边形
A.对角线互相垂直平分 B.内角和为360° C.对角线相等 D.对角线平分内角
2.平行四边形的一边长是10cm,那么它的两条对角线的长度可能是( ) A.8cm和12cm B.8cm和14cm C.6cm和10cm D.6cm和28cm 3.一个正方形的对角线长为2cm,则它的面积是( )
2222
A.2cm B.4cm C.6cm D.8cm
4.若矩形的一条对角线与一边的夹角是40°,?则两条对角线所夹的锐角的度数为( ) A.80° B.60° C.45° D.40°
5.已知菱形的周长为9.6cm,两个邻角的比是1:2,这个菱形较短的对角线的长是( ) A.2.1cm B.2.2cm C.2.3cm D.2.4cm
6.正方形ABCD内有一点E,且△ABE为等边三角形,则∠DCE为( ) A.15° B.18° C.22.5° D.30°
7.如图,在正方形ABCD中,CE=MN,∠BCE=40°,
平行四边形知识点与经典例题
第十八章 平行四边形
18.1.1 平行四边形的性质
第一课时 平行四边形的边、角特征 知识点梳理
1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。 知识点训练
1.(3分)如图,两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成一个四边形,这个四边形是________.
2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )
A.6个 B.7个 C.8个 D.9个
3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为 cm.
4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为 cm.
5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D= ;若∠A+∠C=140°,则∠D= .
6.(4分)(2014·福州)如图,在□ABCD中,DE平分∠ADC,AD
平行四边形
19.2 平行四边形(第一课时)
教学目标:
知识与技能:
1、理解并掌握平行四边形的定义;
2、掌握平行四边形的性质定理1及性质定理2; 3、理解两条平行线的距离的概念; 4、培养学生综合运用知识的能力
过程与方法:经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理
的能力。
情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际
应用价值。
重点、难点:
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 难点:运用平行四边形的性质进行有关的论证和计算.
教具准备:图片、三角板 课时安排:一课时 教学过程:
一、导入新课
引入:
等,都是平行四边形,平行四边形有哪些性质呢?
什么是平行四边形? 平行四边形的定义:
(1)定义: 两组对边分别平行的四边形叫做平行四边形。
在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本
(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形
(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”
平行四边形知识点分类归纳练习题
精编知识点
初二下数学第18章平行四边形期中复习卷
班级: 姓名: 座号:
平行四边形的性质
1、平行四边形定义: 的四边形是平行四边形. 表示方法:用 “□” 表示平行四边形,例如:平行四边形ABCD记作 □ ABCD,读作“平行四边形ABCD”. 2、平行四边形的性质:
(1)角:平行四边形的对角_________;
(2)边:平行四边形两组对边 ; (3)对角线:平行四边形的对角线_________; (4)面积:①S?底?高=ah;②平行四边形的对角线将平行四边形分成4个面积相等的三角形.
练习题:
1 . 已知一个平行四边形两邻边的长分别为6和8,那么它的周长为_____. 2.如图,□ABCD中,BC=BD,∠C=70°,则∠ADB的度数是______,∠A的度数是_____.
3. 如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是_____.
平行四边形的判定
平行四边形的判定方法:(5种方法)
初二数学 平行四边形 知识梳理
初二数学 平行四边形 知识梳理
重点:
平行四边形的性质和判定。
难点:
平行四边形性质和判定的综合应用。
二、知识要点梳理
知识点一:平行四边形的定义
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。即在四边形ABCD中,若有AB∥CD,AD∥BC,则四边形ABCD是平行四边形。 要点诠释:
平行四边形的表示:平行四边形用符号“□”表示,如平行四边形ABCD, 记作:“□ABCD”读作:“平行四边形ABCD”。
相关概念:在平行四边形中 ,相邻的边、角分别简称为邻边、邻角;不相邻的边、角分别称为对边、对角。
知识点二:平行四边形的性质
1.从边看:平行四边形两组对边平行且相等; 2.从角看:平行四边形邻角互补,对角相等; 3.从对角线看:平行四边形的对角线互相平分;
4.平行四边形是中心对称图形,对角线的交点为对称中心;
5.若一条直线过平行四边形的两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中心,且这条直线二等分平行四边形的面积。如下图:有OE=OF,且四边形AFED的面积等于四边形FBCE的面积;
6. 平行四边形的对角线分平行四边形为四个等积的三角形。
知识点三:平行四边形的判定
1、从边上看
(1)两
平行四边形复习讲义
中学1对1课外辅导专家
学科培训师辅导讲义
学员编号 学员姓名 课 题 备课时间 教学目标 重点、难点 年 级 辅导科目 七年级 数学 课时数 学科培训师 2 周老师 平行四边形复习讲义 2016年04月 14日 授课时间 2016年04月15日 掌握平行四边形、矩形、菱形、正方形等概念,掌握平行四边形、矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。 1.平行四边形、矩形、菱形、正方形性质及判定的应用 2.相关知识的综合应用 特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之 一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及考点及考试要求 灵活运用数学思想方法解决问题的能力。内容主要包括:矩形、菱形、 正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。 教学内容 (1) 演变关系: (2) 从属关系: 1
成功不是凭梦想和希望,而是凭努力和实践
平行四边形教学方案
平行四边形(一)
【教学内容】
教科书第70页例1、例2、练习十九1,3,4。
【教学目标】
1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。
2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。
3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。
4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。
5.了解平行四边形在生活中的应用。
【教学重、难点】
教学重点:认识平行四边形及其特征。
教学难点:自己探索、发现、描述、应用平行四边形的特征。
【教学准备】
教具:课件,长方形、三角形活动框,磁性小棒。
学具:三角板,量角器,直尺,平行四边形
纸片(4人小组相同),小棒4根(两两等长)。
【教学过程】
一、 导入新课
1. 目标导学。
(1) 什么是平行四边形?
(2) 平行四边形
新课标人教版八年级数学下平行四边形及特殊的平行四边形知识点总
《四边形》的基本知识、主要考点、配套试题
全章知识脉络:
平行四边形
◆考点1.平行四边形的两组对边分别平行且相等 推论:平行四边形一组邻边的和为周长的一半
对边平行?内错角相等(有“角平分线”会产生“等腰三角形” ) 1.□ABCD的周长为34cm,且AB=7cm,则BC= cm。 2.□ABCD的周长为26cm,相邻两边相差3cm,则AB= cm。 3、如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD=_____cm,
4、如图,□ABCD中,CE平分∠BCD,BG平分∠ABC,BG与CE交于点F。(1)求证:AB=AG;(2)求证:AE=DG;(3)求证:CE⊥BG。
◆考点2.平行四边形的两组对角分别相等 推论:平行四边形的邻角互补
1.平行四边形的一个角为50度,则其余三个角分别为 。
2.平行四边形相邻两个角相差40度,则相邻两角度数分别为 。
3、□ABCD中两邻角∠A:∠B=1:2,则∠C=_______度
B
平行四边形 较难 题库
勾股定理 ?难度一般2 题库
1.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为( ).
5533A.2 B.210 C.10 10 D.5 10
2.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第n个正方形的边长为( )
nn﹣1A.n B.(n﹣1)2 C.(2) D.(2)
3.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝
22
隙).若①②③④四个平行四边形面积的和为14cm,四边形ABCD面积是11cm,则①②③④四个平行四边形周长的总和为( )
A.48cm B.36cm C.24cm D.18cm
4.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )
A. B.2 C.3 D.
5.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点
试卷第1页,总25页
C与点O重合,折痕MN恰好
平行四边形中考集锦
中考集锦
20.(2013福建龙岩,20,10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的
两点,∠1=∠2.
(1)求证:AE=CF;
(2)求证:四边形EBFD是平行四边形.
【答案】(1)证明:
(法一)如图①:∵四边形ABCD是平行四边形,
∴AD=BC,AD // BC,∠3=∠4,
∵∠1=∠3+∠5,∠2=∠4+∠6,
∠1=∠2,
∴∠5=∠6,
∴△ADE ≌△CBF,
∴AE =CF;
图① 图②
(法二)如图②,连接BD交AC于点O,
在平行四边形ABCD中,
OA=OC,OB=OD,
∵∠1=∠2,∠7=∠8,
∴△BOF ≌△DOE,
∴OE=OF,
∴OA-OE =OC-OF,
即:AE=CF.
(2)证明:
(法一)如图①,
∵∠1=∠2,
∴DE // BF,
∵△ADE ≌△CBF,
∴DE=BF,
∴四边形EBFD是平行四边形.
(法二)如图②
∵OE=OF,OB=OD,
∴四边形EBFD是平行四边形.
15.(2013福建泉州,15,4分)如图,顺次连结四边形 ABCD 四边的中点 E、F、G、H,则四边形 EFGH 的形状一定是 .
【答案】 平行四边形
16.(2013福建泉州,16,4分) 如图,菱形ABCD
的周长为