遗传算法优化实验报告
“遗传算法优化实验报告”相关的资料有哪些?“遗传算法优化实验报告”相关的范文有哪些?怎么写?下面是小编为您精心整理的“遗传算法优化实验报告”相关范文大全或资料大全,欢迎大家分享。
遗传算法实验报告
遗传算法实验报告
专业:自动化 姓名:张俊峰 学号:13351067
摘要:遗传算法,是基于达尔文进化理论发展起来的一种应用广泛、高效的随机搜索与优化方法。本实验利用遗传算法来实现求函数最大值的优化问题,其中的步骤包括初始化群体、个体评价、选择运算、交叉运算、变异运算、终止条件判断。该算法具有覆盖面大、减少进入局部最优解的风险、自主性等特点。此外,遗传算法不是采用确定性原则而是采用概率的变迁规则来指导搜索方向,具有动态自适应的优点。
关键词:串集 最优化评估 迭代 变异
一:实验目的
熟悉和掌握遗传算法的运行机制和求解的基本方法。
遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异等操作以及达尔文的适者生存的理论,模拟自然进化过程来寻找所求问题的答案。其求解过程是个最优化的过程。一般遗传算法的主要步骤如下:
(1)随机产生一个确定长度的特征字符串组成的初始种群。。
(2)对该字符春种群迭代地执行下面的步骤a和步骤b,直到满足停止准则为止:
a计算种群中每个个体字符串的适应值;
b应用复制、交叉和变异等遗传算子产生下一
基于遗传算法求解TSP问题实验报告
人工智能课程项目报告
基于遗传算法求解TSP问题
班级,学号,姓名
摘要:巡回旅行商问题(TSP)是一个组合优化方面的问题,从理论上讲,使用穷举法不但可以求解TSP问题,而且还可以得到最优解。但是,利用穷举法所耗费的时间巨大的,当问题的规模很大时,穷举法的执行效率较低,不能满足及时的需要。
遗传算法是计算机科学人工智能领域中用于解决最优化的一种搜索启发式算法,是进化算法的一种。该算法通过模拟生物学交叉、变异等方式,是当前向最优解的方向进化,因此使用于TSP问题的求解。
关键词:人工智能;TSP问题;遗传算法
本组成员:林志青,韩会雯,赵昊罡
本人分工:掌握遗传算法的基本原理,编写遗传算法中部分匹配交叉、循环交叉和循序交叉的具体实现过程。
1 引言
旅行商问题,即TSP问题,是一个最优解的求解问题。假设有n个城市,并且每个城市之间的距离已知,则如何只走一遍并获得最短路径为该问题的具体解释。
对于TSP问题的解决,有穷举法、分支限界法等求解方式,该文章主要介绍遗传算法求解过程。 遗传算法简称GA,在本质上是一种求解问题的高效并行全局搜索方法。遗传算法从任意一个初始化的群体出发,通过随机选择、交叉和变异等遗传操作,使群体一代一代的进化到
遗传算法入门报告
遗传算法入门报告
信息与计算科学专业基础课
Computer Graphics
摘要:
Report Of course experiment 遗传算法学课 程论文
遗传算法入门报告
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。
Concisely stated, a genetic algorithm (or GA for short) is a programming
technique that mimics biological evolution as a problem-solving strategy. Given a
specific problem to solve, the
matlab实用教程 实验十 遗传算法与优化问题
matlab实用教程 实验十 遗传算法与优化问题
matlab实用教程 实验十 遗传算法与优化问题 一、问题背景与实验目的 二、相关函数(命令)及简介 三、实验内容 四、自己动手
一、问题背景与实验目的
遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算. 1.遗传算法的基本原理
遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一
matlab实用教程 实验十 遗传算法与优化问题
matlab实用教程 实验十 遗传算法与优化问题
matlab实用教程 实验十 遗传算法与优化问题 一、问题背景与实验目的 二、相关函数(命令)及简介 三、实验内容 四、自己动手
一、问题背景与实验目的
遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算. 1.遗传算法的基本原理
遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一
遗传算法求解函数优化问题的比较
遗传算法求解函数优化问题的比较
多极值点函数具有多个极值,对此问题,传统的优化技术很容易陷入局部最优解,求得全局优化解的概率不高,可靠性低;为此,建立尽可能大概率的求解全局优化解算法是求解函数优化的一个重要问题。
遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传制)演化而来的随机搜索和优化方法,是当今影响最广泛的进化计算方法之一,是进化计算理论体系的中心。遗传算法借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式。初始化随机产生一个种群,用合理的评价函数对种群进行评估,在此基础上进行选择、交叉及变异等遗传操作。选择算子根据父代中个体适值大小进行选择或淘汰,它保证了算法的最优搜索方向。交叉算子模拟基因重组及随机信息交换,产生更好个体,使其在可行域内有效搜索。变异算子模拟基因突变,保证了遗传算法的全局搜索能力。遗传算法的搜索能力主要由选择算子及交叉算子赋存,变异算子尽可能保证算法达到全局最优,避免陷入局部最优。
遗传算法中的各个模块如下所示 1、编码
将数据进行二进制编码,其规则如下:设某一参数的取值范围为(L,U),使用长度为k的二进制编码表示该参数,则它共有2k种不同的编码。该参数编码时代对应关系为
000000000
遗传算法求解函数优化问题的比较
遗传算法求解函数优化问题的比较
多极值点函数具有多个极值,对此问题,传统的优化技术很容易陷入局部最优解,求得全局优化解的概率不高,可靠性低;为此,建立尽可能大概率的求解全局优化解算法是求解函数优化的一个重要问题。
遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传制)演化而来的随机搜索和优化方法,是当今影响最广泛的进化计算方法之一,是进化计算理论体系的中心。遗传算法借鉴了物种进化的思想,将欲求解问题编码,把可行解表示成字符串形式。初始化随机产生一个种群,用合理的评价函数对种群进行评估,在此基础上进行选择、交叉及变异等遗传操作。选择算子根据父代中个体适值大小进行选择或淘汰,它保证了算法的最优搜索方向。交叉算子模拟基因重组及随机信息交换,产生更好个体,使其在可行域内有效搜索。变异算子模拟基因突变,保证了遗传算法的全局搜索能力。遗传算法的搜索能力主要由选择算子及交叉算子赋存,变异算子尽可能保证算法达到全局最优,避免陷入局部最优。
遗传算法中的各个模块如下所示 1、编码
将数据进行二进制编码,其规则如下:设某一参数的取值范围为(L,U),使用长度为k的二进制编码表示该参数,则它共有2k种不同的编码。该参数编码时代对应关系为
000000000
基于遗传算法和蚂蚁算法求解函数优化问题
基于遗传算法和蚂蚁算法求解函数优化问题
第!"卷第#期$%%&年#月
!"’()*+,-(./013,++361*738:+3+11*3+<31+<1245944;
工学版"浙!江!大!学!学!报!
=(->!"?(>#
@,*>$%%&
基于遗传算法和蚂蚁算法求解函数优化问题
杨剑峰
"浙江大学电气工程学院$浙江杭州##"%%$&
摘!要#针对遗传算法求解精度低以及蚂蚁算法求解速度慢的问题$提出一种基于遗传算法和蚂蚁算法的混合算法>该混合算法利用了遗传算法快速随机的全局搜索能力的优点$设计了编码与适应度函数$进行了种群生成与染色体的选择$并通过设定交叉算子和变异算子$生成了信息素分布>该混合算法利用了蚂蚁算法正反馈以及具有分布式并行全局搜索能力的优点$通过确定吸引强度的初始值$建立了强度更新的模型$从而求得精确解>并将该算法应用于求解函数优化问题>结果表明$该混合算法与遗传算法和蚂蚁算法相比$收敛速度快$寻优性能好>关键词#遗传算法&蚂蚁算法&函数优化
#中图分类号#JK"#!!!!!文献标识码#Q!!
基于Matlab的函数优化遗传算法程序
Matlab写的函数优化遗传算法程序
function [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation,options)
% [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation)
% Finds a maximum of a function of several variables.
% fmaxga solves problems of the form:
% max F(X) subject to: LB <= X <= UB
% BestPop--------最优的群体即为最优的染色体群
% Trace-----------最佳染色体所对应的目标函数值
% FUN------------目标函数
% LB--------------自变量下限
% UB--------------自变量上限
% eranum----------种群的代数,取100--1000(默认1000)
% popsize---------每一代种群的规模;此可取50--100(默认50)
% pcross----
遗传算法简介
关于遗传算法的介绍和简单应用。
遗传算法
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
基本概念
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 对于一个求函数最大值的优化问题(求函
数最小值也类