高中数学函数
“高中数学函数”相关的资料有哪些?“高中数学函数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学函数”相关范文大全或资料大全,欢迎大家分享。
高中数学函数压轴题(精制)
高考数学函数压轴题:
1. 已知函数f(x)?134x?ax?b(a,b?R)在x?2处取得的极小值是?. 33(1)求f(x)的单调递增区间;
(2)若x?[?4,3]时,有f(x)?m?m?210恒成立,求实数m的取值范围. 3
2
2. 某造船公司年最高造船量是20艘. 已知造船x艘的产值函数R (x)=3700x + 45x – 3
10x(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本)
(1) 利润函数P(x) 及边际利润函数MP(x);
(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?
(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?
3. 已知函数?(x)?5x2?5x?1(x?R),函数y?f(x)的图象与?(x)的图象关于点
1(0,)中心对称。 2(1)求函数y?f(x)的解析式;
(2)如果g1(x)?f(x),gn(x)?f[gn?1(x)](n?N,n?2),试求出使g
2014高中数学抽象函数专题
一.定义域问题 --------多为简单函数与复合函数的定义域互求。
例1.若函数y = f(x)的定义域是[-2,2],则函数y = f(x+1)+f(x-1)的定义域为 。
?练习:已知函数f(x)的定义域是??1,2? ,求函数f??log1?3?x?? 的定义域。
??2??例2:已知函数f?log3x?的定义域为[3,11],求函数f(x)的定义域 。 练习:定义在?3,8?上的函数f(x)的值域为??2,2?,若它的反函数为f-1(x),则y=f-1(2-3x)的定义域为 ,值域为 。
例3.①对任意实数x,y,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______. ② R上的奇函数y=f(x)有反函数y=f-1(x),由y=f(x+1)与y=f-1(x+2)互为反函数,则f(2009)= .
例4.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2002)=_________.
练习: 1. f(x)的定义域为(0,??),对任意正
高中数学函数解题技巧
专题1 函数 (理科)
一、考点回顾
1.理解函数的概念,了解映射的概念.
2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.
3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析
考点一:函数的性质与图象
函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.
复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:
1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.
2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.
3.培养学生用运动变
高中数学函数压轴题(精制)
高考数学函数压轴题:
1. 已知函数f(x)?134x?ax?b(a,b?R)在x?2处取得的极小值是?. 33(1)求f(x)的单调递增区间;
(2)若x?[?4,3]时,有f(x)?m?m?210恒成立,求实数m的取值范围. 3
2
2. 某造船公司年最高造船量是20艘. 已知造船x艘的产值函数R (x)=3700x + 45x – 3
10x(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本)
(1) 利润函数P(x) 及边际利润函数MP(x);
(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?
(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?
3. 已知函数?(x)?5x2?5x?1(x?R),函数y?f(x)的图象与?(x)的图象关于点
1(0,)中心对称。 2(1)求函数y?f(x)的解析式;
(2)如果g1(x)?f(x),gn(x)?f[gn?1(x)](n?N,n?2),试求出使g
高中数学竞赛专题讲义-高斯函数
深圳第二实验学校高二数学竞赛专题讲义
高斯函数(1) [知识点金]
1. 有关概念
对于任意实数x,?x?为不超过x的最大整数,,y??x?称为取整函数或叫高斯函数,并将y??x??x??x?称为小数部分函数,表示x的小数部分.
2. 重要性质
(1) y??x?的定义域是R,值域为Z; (2) 如果x?R,n?Z,则有?n?x??n??x?; (3) 对任意x?R,有?x??x??x??1,x?1??x??x; (4) 当x?y时,有?x???y?,即y??x?是不减函数; (5) 对于x,y?R,有?x???y???x?y???x???y??1; (6) 如果n?N?,x?R,则?nx??n?x?; ?x???x??(7) 如果n?N,x?R,则?????.
nn?????3. 常用方法
(1) 定义法 (2) 讨论 (3) 分组法 (4) 去整法 (5) 构造法
[例题精析]
例1 求方程3
例2 解方程 8?3x??5?2x??3.
例3 求方程lgx??lgx??2?0的实数根的个数.
22x???10?3x?1???32x???10?3x?1??82??80的解的个数
李江《高中数学》必会基础题型—《函数》
高三一轮复习——李江《高中数学》必会基础题型——函数
《高中数学》必会基础题型——《函数》 作者:李江
【知识点】
1.函数的单调性。
(1)设a x1 x2 b,若f(x1) f(x2),则f(x)在 a,b 上是增函数;
(2)设a x1 x2 b,若f(x1) f(x2),则f(x)在 a,b 上是减函数。 结论:两个增函数的和还是增函数,两个减函数的和还是减函数。
1
若y f(x)是增函数,则y f(x)是减函数,y 是减函数。
f(x)1
反之:若y f(x)是减函数,则y f(x)是增函数,y 是增函数。
f(x)
2.函数的奇偶性。【注意:函数具有奇偶性的前提是定义域关于原点对称】 代数意义:若f( x) f(x),则f(x)是奇函数;
若f( x) f(x),则f(x)是偶函数。 几何意义:奇函数的图象关于原点对称;偶函数的图象关于y轴对称。
反过来也成立:如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数。 3.指数与根式的互化
:a (a 0)
4.指数幂的运算性质:①ar as ar s;②(ar)s ars;③(ab)r arbr。 5
高中数学函数常用函数图形及其基本性质
《思跃理科》内部资料——总结人:liyong
常见函数性质汇总
f(x)=b
常数函数 f(x)=b (b∈R)
x 图象及其性质:函数f(x)的图象是平行于x轴或与x轴重合(垂直于y轴)的直线 O
一次函数 f(x)=kx+b (k≠0,b∈R) |k|越大,图象越陡;|k|越小,图象越平缓; y f(x)=kx+b
图象及其性质:直线型图象。b=0;k>0;k<0
定 义 域:R 值域:R 单调性:当k>0时, 当k<0时
x O 奇 偶 性:当b=0时,函数f(x)为奇函数;当b≠0时,函数f(x)没有奇偶性;
反 函 数:有反函数。K=±1、b=0的时候 周 期 性:无
补充:一次函数与其它函数之间的lianxi 1、与一元一次函数之间的联系
2、与曲线函数的联合运用
反比例函数 f(x)=
y b k (k≠0,k值不相等永不相交;k越大,离坐标轴越远) x图象及其性质:永不相交,渐趋平行;当k>0时,函数f(x)的图象分别在第一、第三象
限;当k<0时,函数f(x)的图象分别在第二、第四象限; 双曲线型曲线,x轴与y轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:(??,0)?(0,??) 值 域:(??,0)?(0,??)
y f(x)=O k xx 单 调 性:当k> 0时;当k< 0时
奇 偶 性:奇函数 反 函 数:原函数本身
李江《高中数学》必会基础题型—《函数》
高三一轮复习——李江《高中数学》必会基础题型——函数
《高中数学》必会基础题型——《函数》 作者:李江
【知识点】
1.函数的单调性。
(1)设a x1 x2 b,若f(x1) f(x2),则f(x)在 a,b 上是增函数;
(2)设a x1 x2 b,若f(x1) f(x2),则f(x)在 a,b 上是减函数。 结论:两个增函数的和还是增函数,两个减函数的和还是减函数。
1
若y f(x)是增函数,则y f(x)是减函数,y 是减函数。
f(x)1
反之:若y f(x)是减函数,则y f(x)是增函数,y 是增函数。
f(x)
2.函数的奇偶性。【注意:函数具有奇偶性的前提是定义域关于原点对称】 代数意义:若f( x) f(x),则f(x)是奇函数;
若f( x) f(x),则f(x)是偶函数。 几何意义:奇函数的图象关于原点对称;偶函数的图象关于y轴对称。
反过来也成立:如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数。 3.指数与根式的互化
:a (a 0)
4.指数幂的运算性质:①ar as ar s;②(ar)s ars;③(ab)r arbr。 5
高中数学怎么学-怎样学好高中数学
高中女生该如何学好数学
高中数学怎么学-怎样学好高中数学
一、 高中数学课的设置
高中数学内容丰富,知识面广泛,将有:《代数》上、下册、《立体几何》和《平面解析几何》四本课本,高一年级学习完《代数》上册和《立体几何》两本书。高二将学习完《代数》下册和《平面解析几何》两本书。一般地,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。
二、初中数学与高中数学的差异。
1、知识差异。
初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为
高中数学怎么学-怎样学好高中数学
高中女生该如何学好数学
高中数学怎么学-怎样学好高中数学
一、 高中数学课的设置
高中数学内容丰富,知识面广泛,将有:《代数》上、下册、《立体几何》和《平面解析几何》四本课本,高一年级学习完《代数》上册和《立体几何》两本书。高二将学习完《代数》下册和《平面解析几何》两本书。一般地,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。
二、初中数学与高中数学的差异。
1、知识差异。
初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为