高中必修一二数学知识点总结
“高中必修一二数学知识点总结”相关的资料有哪些?“高中必修一二数学知识点总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中必修一二数学知识点总结”相关范文大全或资料大全,欢迎大家分享。
高中必修(一)(二)数学知识点 总结
高中必修(一)(二)数学知识点 总结
高中必修(一)(二)数学知识点
总结
必修一
集合与函数知识点讲解
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集 的特殊情况。 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:
(1)集合 a1,a2, ,an 的所有子集的个数是2n;
4. 你会用补集思想解决问题吗?(排除法、间接法)
如:已知关于x的不等式
的取值范围。 ax 5 0的解集为M,若3 M且5 M,求实数a x2 a
(∵3 M,∴a·3 5 032 a
a·5 5 025 a5 a 1, 9,25 ) 3 ∵5 M,∴
补充:数轴标根法解不等式
5. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
6 . 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
7. 求函数的定义域有哪些常见类型?
例:函数y x4 xlg x 3 2的定义域是
(答: 0,2 2,3
高中必修(一)(二)数学知识点 总结
高中必修(一)(二)数学知识点 总结
高中必修(一)(二)数学知识点
总结
必修一
集合与函数知识点讲解
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集 的特殊情况。 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:
(1)集合 a1,a2, ,an 的所有子集的个数是2n;
4. 你会用补集思想解决问题吗?(排除法、间接法)
如:已知关于x的不等式
的取值范围。 ax 5 0的解集为M,若3 M且5 M,求实数a x2 a
(∵3 M,∴a·3 5 032 a
a·5 5 025 a5 a 1, 9,25 ) 3 ∵5 M,∴
补充:数轴标根法解不等式
5. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
6 . 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
7. 求函数的定义域有哪些常见类型?
例:函数y x4 xlg x 3 2的定义域是
(答: 0,2 2,3
高中数学知识点总结
中国特级教师高考复习方法指导〈数学复习版〉
高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
如 :集合A?x|y?lgx,B?y|y?lgx,C?(x,y)|y?lgx,A、B、C??????中元素各表示什么?
. 进行集合的交、并、补运算时,不要忘记集合本身和空集?的特殊情况。 2
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
2 如 :集合A?x|x?2x?3?0,B?x|ax?1???1?3?? 若 B?A,则实数a的值构成的集合为 ( 答:,?10,)?? 3. 注意下列性质:
( 1)集合a,a,??,a的所有子集的个数是2;12n????n2)若A?B?A?B?A,A?B?B; (
(3)德摩根定律:
CA?B?CA?CB,CA?B?CA?CB????????????UUUUUU 4. 你会用补集思想解决问题吗?(排除法、间接法)
如 :已知关于x的不等式?0的解集为M,若3?M且5?M,求实数a2的取值范围。
ax?5x?aa·35?(∵3?M,∴?023?
高中文科数学知识点总结
高中数学 必修1知识点 第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N表示自然数集,N?或N?表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是a?M,或者a?M,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等 名称 记号 意义 (1)A?A A中的任一元素都属于B (2)??性质 示意图 A?B 子集 (或B?A) A?B ?A (3)若A?B且B?C,则A?C (4)若A?B且B?A,则A?B (1)???A(B)BA或 真子集 (或B?A) ?A?B,且A(A为非空子集) BAB中至少有一元素
高中数学知识点总结
中国特级教师高考复习方法指导〈数学复习版〉
高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 如:集合A??x|y?lgx?,B??y|y?lgx?,C??(x,y)|y?lgx?,A、B、C 中元素各表示什么?
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集?的特殊情况。 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 如:集合A??x|x2?2x?3?0?,B??x|ax?1? 若B?A,则实数a的值构成的集合为 (答:???1,0,1??3??) 3. 注意下列性质: (1)集合?a1,a2,??,an?的所有子集的个数是2n; (2)若A?B?A?B?A,A?B?B; (3)德摩根定律: CU?A?B???CUA???CUB?,CU?A?B???CUA???CUB? 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于x的不等式ax?5x2?a?0的解集为M,若3?M且5?M,求实数a 的取值范围。 (∵3?M,∴a·3?532?a?
高中数学知识点总结
高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
如:集合A??x|y?lgx?,B??y|y?lgx?,C??(x,y)|y?lgx?,A、B、C中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集?的特殊情况。注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 如:集合A??x|x2?2x?3?0?,B??x|ax?1? 若B?A,则实数a的值构成的集合为 3. 注意下列性质:
(1)集合a1,a2,??,an的所有子集的个数是2n; (2)若A?B?A?B?A,A?B?B; (3)德摩根定律:
1? (答:???1,0,?)?3???CU?A?B???CUA???CUB?,CU?A?B???CUA???CUB?
ax?5?0的解集为M,若3?M且5?M,求实数a的取值范围。 x2?a 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于x的不等式(∵3?M,∴
a·3?5?032?aa·5?5?025?a?5??a??1,???9,25?
人教版高中数学知识点总结:新课标人教A版高中数学必修5知识点总结
高中数学必修5知识点总结
第一章:解三角形
1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外接圆的半径,则
abc???2R. sin?sin?sinC2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;
abc②sin??,sin??,sinC?;(正弦定理的变形经常用在有三角函数的等式中)
2R2R2R③a:b:c?sin?:sin?:sinC;
a?b?cabc???④.
sin??sin??sinCsin?sin?sinC1113、三角形面积公式:S???C?bcsin??absinC?acsin?.
222有
4、余 定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,
222222c2?a2?b2?2abcosC.
b2?c2?a2a2?c2?b2a2?b2?c25、余弦定理的推论:cos??,cos??,cosC?.
2bc2ab2ac6、设a、b、c是???C的角?、?、C的对边,则:①若a?b?c,则C?90为直角三角形;
②若a?b?c,则C?90为锐角三角形;③若a?b?c,则C?90为钝角三角形.
222222??222?第二章:数列
2011高中数学知识点总结
b8c4c5089ec3d5bbfc0a748a 高考圈-让高考没有难报的志愿
高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}
{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??????1013
3. 注意下列性质:
{}
()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??==
(3)德摩根定律:
()()()()()()C C C C C C U U U U U U
A B A B A B A B ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式
的解集为,若且,求实数x
高中数学知识点总结(文科)
高中数学知识点总结
第一章——集合与简易逻辑
集合——知识点归纳
定义:一组对象的全体形成一个集合 特征:确定性、互异性、无序性 表示法:列举法{1,2,3,?}、描述法{x|P}韦恩图
分类:有限集、无限集 数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N*、空集φ 关系:属于∈、不属于?、包含于?(或?)、真包含于、集合相等= 运算:交运算A∩B={x|x∈A且x∈B};
并运算A∪B={x|x∈A或x∈B};
补运算CUA={x|x?A且x∈U},U为全集 性质:A?A; φ?A; 若A?B,B?C,则A?C;
A∩A=A∪A=A; A∩φ=φ;A∪φ=A; A∩B=A?A∪B=B?A?B;
A∩CUA=φ; A∪CUA=I;CU( CUA)=A; CU(A?B)=(CUA)∩(CUB) 方法:韦恩示意图, 数轴分析 注意:① 区别∈与、与?、a与{a}、φ与{φ}、{(1,2)}与{1,2}; ② A?B时,A有两种情况:A=φ与A≠φ ③若集合A中有n(n?N)个元素,则集合A的所有不同的子集个数为2n,所有真子集的个数是2-1, 所有非空真子集的个数是2?2
nn④区分集合中元素的形式:如A?{x|y?
高中数学知识点总结(文科)
高中数学知识点总结
第一章——集合与简易逻辑
集合——知识点归纳
定义:一组对象的全体形成一个集合 特征:确定性、互异性、无序性
表示法:列举法{1,2,3,?}、描述法{x|P}韦恩图
分类:有限集、无限集
数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N*、空集φ 关系:属于∈、不属于?、包含于?(或?)、真包含于、集合相等= 运算:交运算A∩B={x|x∈A且x∈B};
并运算A∪B={x|x∈A或x∈B};
补运算CUA={x|x?A且x∈U},U为全集 性质:A?A; φ?A; 若A?B,B?C,则A?C;
A∩A=A∪A=A; A∩φ=φ;A∪φ=A; A∩B=A?A∪B=B?A?B;
A∩CUA=φ; A∪CUA=I;CU( CUA)=A; CU(A?B)=(CUA)∩(CUB) 方法:韦恩示意图, 数轴分析 注意:① 区别∈与、与?、a与{a}、φ与{φ}、{(1,2)}与{1,2}; ② A?B时,A有两种情况:A=φ与A≠φ
③若集合A中有n(n?N)个元素,则集合A的所有不同的子集个数为2n,所有真子集的个数是2n-1, 所有非空真子集的个数是2?2 n④区分集合中元素的形式:如A?{x|y?