灰色预测与一元线性回归预测的比较
“灰色预测与一元线性回归预测的比较”相关的资料有哪些?“灰色预测与一元线性回归预测的比较”相关的范文有哪些?怎么写?下面是小编为您精心整理的“灰色预测与一元线性回归预测的比较”相关范文大全或资料大全,欢迎大家分享。
灰色预测与一元线性回归预测的比较
第22卷第1期2009年2月
四川理工学院学报(自然科学版)
JournalofSichuanUniversityofScience&Engineering(NaturalScienceEdition)Vol 22 No 1
Feb 2009
文章编号:1673 1549(2009)01 0107 03
灰色预测与一元线性回归预测的比较
刘晓叙
(四川理工学院机械工程学院,四川自贡643000)
摘 要:在介绍灰色预测和一元线性回归预测基本方法的基础上,用两个例子对两种方法的预测值进行了比较,结果表明:对所用的两个例子,灰色预测的GM(1,1)模型对数据的预测值精度较一元线性回归要好。
关键词:灰色预测;一元线性回归;比较中图分类号:TB11
根据系统已有的数据,按一定的方法建立模型,对系统的未来变化情况作出预测,是预测研究的主要工作。预测的方法很多,预测是否准确的关键,是能不能按照已有的数据和数据变化的趋势建立适当的数学模型,当模型能很好地反映数据的内在变化规律,则模型的预测数据就会与实际的数据比较吻合,反之则存在较大的误差。
从系统论的观点来看,影响一个系统的各个参数之间都存在一定的关系,有些是很确定的关系,这种确定关系
一元线性回归模型习题与答案
一元线性回归模型习题与答案
第二章 一元线性回归模型习题与答案
1、为什么模型中要引入随机扰动项?
2、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。生育率对教育年数的简单回归模型为:
kids 0 1educ
(1)随机扰动项 包含什么样的因素?它们可能与教育水平相关吗?
(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
3、已知回归模型E N ,式中E为某类公司一名新员工的起始薪金(元),N为所受教育水平(年)。随机扰动项 的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释 和 。
满足线性、无偏性及有效性吗?简单陈述理由。 和 (2)OLS估计量
(3)对参数的假设检验还能进行吗?简单陈述理由。
2.69 0.48X,其中,Y表示墨西哥的咖啡消费量4、假定有如下的回归结果:Ytt
(每天每人消费的杯数),X表示咖啡的零售价格(单位:美元/杯),t表示时间。 问:(1)这是一个时间序列回归还是横截面序列回归?做出回归线。
(2)如何解释截距的意义?它有经济含义吗?如何解释斜率?
(3)能否求出真实的总体回归函数?
(4)根据需求的价格弹性定义:弹性=斜率×X/Y,依据
一元线性回归spss作业
一元线性回归实验指导
一、 使用spss进行线性回归相关计算
题目:
为研究医药企业销售收入与广告支出的关系,随机抽取了20家医药企业,得到它们的销售收入和广告支出的数据如下表(数据在‘广告.sav’中)
1. 绘制散点图描述收入与广告支出的关系
结果:(散点图粘贴在下面)
从散点图可直观看出销售收入和广告支出(存在/不存在)线性关系
2. 计算两个变量的相关系数r及其检验
相关性结果表格:(粘贴在下面)
从结果中可看出,销售收入与广告支出的相关系数为(),双侧检验的P值(),r在0.01显著性水平下(),表明销售收入与广告支出之间(存在/不存在)线性关系。
3. 一元线性回归分析
计算回归分析;并输出标准化残差的pp图和直方图 分析输出的结果: 模型汇总表格:(粘贴在下面)
这个表格给出相关系数R=()以及标准估计的误差()
方差分析(ANOVA)表格:(粘贴在下面)
这个表格给出回归模型的方差分析表,包括回归平方和SSR、回归均方MSR、残差平方和SSE、残差均方MSE、总平方和SST和总均方MST,F值129.762以及P值(),此处p值(),说明回归的线性关系(显著/不显著)
系数表格:(粘贴在下面)
上面这个表格
一元线性回归spss作业
一元线性回归实验指导
一、 使用spss进行线性回归相关计算
题目:
为研究医药企业销售收入与广告支出的关系,随机抽取了20家医药企业,得到它们的销售收入和广告支出的数据如下表(数据在‘广告.sav’中)
1. 绘制散点图描述收入与广告支出的关系
结果:(散点图粘贴在下面)
从散点图可直观看出销售收入和广告支出(存在/不存在)线性关系
2. 计算两个变量的相关系数r及其检验
相关性结果表格:(粘贴在下面)
从结果中可看出,销售收入与广告支出的相关系数为(),双侧检验的P值(),r在0.01显著性水平下(),表明销售收入与广告支出之间(存在/不存在)线性关系。
3. 一元线性回归分析
计算回归分析;并输出标准化残差的pp图和直方图 分析输出的结果: 模型汇总表格:(粘贴在下面)
这个表格给出相关系数R=()以及标准估计的误差()
方差分析(ANOVA)表格:(粘贴在下面)
这个表格给出回归模型的方差分析表,包括回归平方和SSR、回归均方MSR、残差平方和SSE、残差均方MSE、总平方和SST和总均方MST,F值129.762以及P值(),此处p值(),说明回归的线性关系(显著/不显著)
系数表格:(粘贴在下面)
上面这个表格
2 一元线性回归模型
计量经济学
第二章 经典单方程计量经济学模型: 一元线性回归模型 回归分析概述 一元线性回归模型的参数估计 一元线性回归模型检验 一元线性回归模型预测 实例
计量经济学
§2.1
回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF)
三、随机扰动项四、样本回归函数(SRF)
计量经济学
一、变量间的关系及回归分析的基本概念1. 变量间的关系
(1)确定性关系或函数关系:研究的是确定现 象非随机变量间的关系。
圆面积 f , 半径 半径2(2)统计依赖或相关关系:研究的是非确定现 象随机变量间的关系。
农作物产量 f 气温, 降雨量, 阳光, 施肥量
计量经济学
对变量间统计依赖关系的考察主要是通过相关 分析(correlation analysis)或回归分析 (regression analysis)来完成的正相关 线性相关 统计依赖关系 不相关 相关系数: 有因果关系 无因果关系 回归分析 相关分析 负相关 1 XY 1 正相关 非线性相关 不相关 负相关
计量经济学
注意 ①不线性相关并不意味着不相关。 ②有相关关系并不意味着一定有因果关系。 ③回归分析/相
一元线性回归模型习题与答案
一元线性回归模型习题与答案
第二章 一元线性回归模型习题与答案
1、为什么模型中要引入随机扰动项?
2、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。生育率对教育年数的简单回归模型为:
kids 0 1educ
(1)随机扰动项 包含什么样的因素?它们可能与教育水平相关吗?
(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
3、已知回归模型E N ,式中E为某类公司一名新员工的起始薪金(元),N为所受教育水平(年)。随机扰动项 的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释 和 。
满足线性、无偏性及有效性吗?简单陈述理由。 和 (2)OLS估计量
(3)对参数的假设检验还能进行吗?简单陈述理由。
2.69 0.48X,其中,Y表示墨西哥的咖啡消费量4、假定有如下的回归结果:Ytt
(每天每人消费的杯数),X表示咖啡的零售价格(单位:美元/杯),t表示时间。 问:(1)这是一个时间序列回归还是横截面序列回归?做出回归线。
(2)如何解释截距的意义?它有经济含义吗?如何解释斜率?
(3)能否求出真实的总体回归函数?
(4)根据需求的价格弹性定义:弹性=斜率×X/Y,依据
一元线性回归模型(习题与解答)
一元线性回归模型(习题与解答)
第二章 一元线性回归模型
一、习题
(一)基本知识类题型 2-1.解释下列概念: 1) 总体回归函数 2) 样本回归函数 3) 随机的总体回归函数 4) 线性回归模型
5) 随机误差项(ui)和残差项(ei) 6) 条件期望 7) 非条件期望 8) 回归系数或回归参数 9) 回归系数的估计量 10) 最小平方法
2-2.判断正误并说明理由:
1) 随机误差项ui和残差项ei是一回事
2) 总体回归函数给出了对应于每一个自变量的因变量的值 3) 线性回归模型意味着变量是线性的
4) 在线性回归模型中,解释变量是原因,被解释变量是结果 5) 随机变量的条件均值与非条件均值是一回事
2-3.回答下列问题:
1) 线性回归模型有哪些基本假设?违背基本假设的计量经济学模型是否就不可估计? 2) 总体方差与参数估计误差的区别与联系。 3) 随机误差项ui和残差项ei的区别与联系。
4) 根据最小二乘原理,所估计的模型已经使得拟合误差达到最小,为什么还要讨论模型的
11) 最大似然法 12) 估计量的标准差 13) 总离差平方和 14) 回归平方和 15) 残差平方和 16) 协方差 17) 拟合优度检验 18) t检验 19) F检验
一元线性回
2 一元线性回归模型
计量经济学
第二章 经典单方程计量经济学模型: 一元线性回归模型 回归分析概述 一元线性回归模型的参数估计 一元线性回归模型检验 一元线性回归模型预测 实例
计量经济学
§2.1
回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF)
三、随机扰动项四、样本回归函数(SRF)
计量经济学
一、变量间的关系及回归分析的基本概念1. 变量间的关系
(1)确定性关系或函数关系:研究的是确定现 象非随机变量间的关系。
圆面积 f , 半径 半径2(2)统计依赖或相关关系:研究的是非确定现 象随机变量间的关系。
农作物产量 f 气温, 降雨量, 阳光, 施肥量
计量经济学
对变量间统计依赖关系的考察主要是通过相关 分析(correlation analysis)或回归分析 (regression analysis)来完成的正相关 线性相关 统计依赖关系 不相关 相关系数: 有因果关系 无因果关系 回归分析 相关分析 负相关 1 XY 1 正相关 非线性相关 不相关 负相关
计量经济学
注意 ①不线性相关并不意味着不相关。 ②有相关关系并不意味着一定有因果关系。 ③回归分析/相
1一元线性回归方程
回归分析确定性关系或函数关系y =f (x) 变 量 间 的 关 系 非 确 定 性 关 系人的身高和体重 家庭的收入和消费 商品的广告费和销售额 粮食的施肥量和产量
x相关关系
Y
称这种非确定性关系为统计关系或相关(相依 关系. 称这种非确定性关系为统计关系或相关 相依)关系
第一章 一元线性回归模型以下设 x 为自变量(普通变量 Y 为因变量(随机变 普通变量) 普通变量 随机变 量) .现给定 x 的 n 个值 x1,…, xn, 观察 Y 得到相应的 n 个 值 y1,…,yn, (xi ,yi) i=1,2,…, n 称为样本点 样本点. 样本点 以 (xi ,yi) 为坐标在平面直角坐标系中描点,所得到 的这张图便称之为散点图 散点图. 散点图
北京市城市居民家庭生活抽样调查图表 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18x:人均生活费收入Y:人均食品支出
§1.1 模型的建立及其假定条件一、一元线性回归模型例如:研究某市可支配收入X对人均消费支出 的影响。建立如下 例如:研究某市可支配收入 对人均消费支出Y 的影响。 对人均消费支出
理论回归模型:
Yi = β0 + β1 Xi + εi其中: ——
实验二 一元线性回归模型
实验二 一元线性回归模型
【实验目的】
掌握一元线性回归模型的建模方法。 【实验内容】
一、我国税收预测模型;
二、建立中国城镇居民消费函数。 【实验步骤】
(以我国税收预测模型为例)
一、启动EViews软件:
进入Windows/双击Eviews快捷方式,进入EViews窗口,或点击开始/程序/Econometrics Views,进入EViews窗口。
二、建立工作文件: 键入CREATE A 85 97 三、输入数据
1.键入命令:DATA Y X
2.输入每个变量的统计数据。 四、图形分析:
1.趋势图:PLOT Y X 2.相关图:SCAT X Y 五、估计线性回归模型: 命令方式 LS Y C X
六、建立城镇居民消费模型(以菜单方式) 1.建立工作文件:
⑴点击File╲New╲Workfile(将弹出一个工作文件对话框); ⑵选择undated or irregular(非时序数据,数据个数选8) 点击OK。
2.输入数据:
⑴键入命令:DATA Y X
⑵输入每个变量的统计数据。 3.图形分析:
⑴趋势图:PLOT Y X ⑵相关图:SCAT X Y 4.估计线性回归模型: 菜单方式
⑴点击Qu